12 resultados para CONGO
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
New structural, geochronological and paleomagnetic data were obtained on dolerite dikes of the Nola region (Central African Republic) at the northern border of the Congo craton. In this region metavolcanic, successions were thrust southward onto the craton during the Panafrican orogenic events. Our structural data reveal at least two structural klippes south of the present-day limits of the Panafrican nappe suggesting that it has once covered the whole Nola region, promoting the pervasive hydrothermal green-schist metamorphism observed in the underlying cratonic basement and also in the intrusive dolerite dikes. Paleomagnetic measurements revealed a stable dual-polarity low-inclination magnetization component in nine dikes (47 samples), carried by pyrrhotite and magnetite. This component corresponds to a paleopole at 304.8 degrees E and 61.8 degrees S (dp = 5.4, dm = 10.7) graded at 2 = 6. Both metamorphism and magnetic resetting were dated by the Ar-40/Ar-39 method on amphibole grains separated from the dikes at 571 +/- 6 Ma. The Nola pole is the first well-dated paleomagnetic pole for the Congo craton between 580 and 550 Ma. It marks a sudden change in direction of the Congo craton apparent polar wander path at the waning stages of the Panafrican orogenic events. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the south Sao Francisco craton a circular and 8-m amplitude geoid anomaly coincides with the outcropping terrain of an Archean-Paleoproterozoic basement. Broadband magnetotelluric (MT) data inversions of two radial profiles within the positive geoid and Bouguer gravity anomaly yield geo-electrical crustal sections, whereby the lower crust is locally more conductive (10 to 100 Omega m) in spatial coincidence with a denser lower crust modeled by the gravity data. This anomalous lower crust may have resulted from magmatic underplating, associated with Mesoarchean and Proterozoic episodes of tholeiitic dike intrusion. Long-period MT soundings reveal a low electrical resistivity mantle (20 to 200 Omega m) from depths beyond 120 km. Forward geoid modeling, using the scope of the low electrical resistivity region within the mantle as a constraint, entails a density increase (40 to 50 kg/m(3)) possibly due to Fe enrichment of mantle minerals. However, this factor alone does not explain the observed resistivity. A supplemented presence of small amounts of percolated carbonatite melting (similar to 0.005 vol.%), dissolved water and enhanced oxygen fugacity within the peridotitic mantle are viable agents that could explain the less resistive upper mantle. We propose that metasomatic processes confined in the sub-continental lithospheric mantle foster the conditions for a low degree melting with variable CO(2), H(2)O and Fe content. Even though the precise age of this metasomatism is unknown it might be older than the Early Cretaceous based on the evidence that a high-degree of melting in a lithospheric mantle impregnated with carbonatites originated the tholeiitic dike intrusions dispersed from the southeastern border of the Sao Francisco craton, during the onset of the lithosphere extension and break-up of the western Gondwana. The proxies are the NE Parana and Espinhaco (130 Ma, Ar/Ar ages) tholeiitic dikes, which contain (similar to 3%) carbonatites in their composition. The occurrence of a positive geoid anomaly (+ 10 m) and pre-tholeiites (age > 138 Ma), carbonatites and kimberlites along the west African continental margin (Angola and Namibia) reinforces the presumed age of the Sao Francisco-Congo craton rejuvenation to be prior to its fragmentation in the Lower Cretaceous. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Acanthamoeba species are frequently isolated from soil and water collections. In the environment, the organisms multiply as phagotrophic trophozoites and encyst under adverse conditions. Several species are known to infect man, causing keratitis and opportunistic diseases. The mechanisms underlying tissue damage and invasion by the amoebae are being elucidated and the involvement of secreted peptidases, particularly serine peptidases, has been demonstrated. Here, elastase activity was examined in Acanthamoeba-conditioned medium (ACM), making use of elastin-Congo red (ECR) and synthetic peptide p-nitroanilide substrates. ACM hydrolysed ECR over a broad pH range and optimally at a pH of 7.5 and above. Indicating the activity of serine and metallopeptidases, Congo red release was potently inhibited by PMSF, antipain, chymostatin and 1,10-phenanthroline, partially reduced by elastatinal and EDTA, and unaffected by 1,7-phenanthroline and E-64. Screening with synthetic substrates mainly showed the activity of serine peptidases. ACM efficiently hydrolysed Suc-Ala(2)-Pro-Leu-pNA and Suc-Ala(2)-Pro-Phe-pNA over a broad pH range (7.0-9.5) and was weakly active against Suc-Ala(3)-pNA, a substrate found to be optimally hydrolysed at a pH around 7.0. Following ammonium sulfate precipitation of ACM proteins and FPLC analysis, the majority of the ECR-splitting activity, characterised as serine peptidases, bound to CM-sepharose and co-eluted with part of the Suc-Ala(2)-Pro-Phe-pNA-hyd to lysing activity in a gradient of 0-0.6 M NaCl. In the corresponding FPLC fractions, serine peptidases resolving in the region of 70-130 kDa were detected in gelatin gels. Overall, the results demonstrate that trophozoites secrete elastases, and additionally suggest the high molecular weight serine peptidases as possible elastase candidates. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The combination of luminescent polymers and suitable energy-accepting materials may lead to a molecular-level control of luminescence in nanostructured films. In this study, the properties of layer-by-layer (LbL) films of polyp-phenylene vinylene) (PPV) were investigated with steady-state and time-resolved fluorescence spectroscopies, where fluorescence quenching was controlled by interposing inert polyelectrolyte layers between the PPV donor and acceptor layers made with either Congo Red (CR) or nickel tetrasulfonated phthalocyanine (NiTsPc). The dynamics of the excited state of PPV was affected by the energy-accepting layers, thus confirming the presence of resonant energy transfer mechanisms. Owing to the layered structured of both energy donor and acceptor units, energy transfer varied with the distance between layers, r, according to 1/r(n) with n = 2 or 3, rather than with 1/r(6) predicted by the Forster theory for interacting point dipoles.
Resumo:
The discovery of an alternative route to convert poly(xylyliden tetrahydrothiophenium chloride) (PTHT) into poly(p-phenylene vinylene) (PPV) using dodecylbenzenesulfonate (DBS) has allowed the formation of ultrathin films with unprecedented control of architecture and emission properties. In this work, we show that this route may be performed with several sufonated compounds where RSO(3)(-) replaces the counter-ion (Cl(-)) of PTHT, some of which are even more efficient than DBS. Spin-coating films were produced from PTHT and azo-dye molecules, an azo-polymer and organic salts as counter-ions of PTHT. The effects of the thermal annealing step of PTHT/RSO(3)(-) films at 110 and 230 degrees C were monitored by measuring the absorption and emission spectra. The results indicate that the exchange of the counterion Cl(-) of PTHT by a linear long chain with RSO(3)(-) group is a general procedure to obtain PPV polymer at lower conversion temperature (ca. 110 degrees C) with significant increase in the emission efficiency, regardless of the chemical position and the number of sulfonate groups. With the enhanced emission caused by Congo Red and Tinopal as counter-ions, it is demonstrated that the new synthetic route is entirely generic, which may allow accurate control of conversion and emission properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Our current understanding of the tectonic history of the principal Pan-African orogenic belts in southwestern Africa, reaching from the West Congo Belt in the north to the Lufilian/Zambezi, Kaoko, Damara, Gariep and finally the Saldania Belt in the south, is briefly summarized. On that basis, possible links with tectono-stratigraphic units and major structures on the eastern side of the Rio de la Plata Craton are suggested, and a revised geodynamic model for the amalgamation of SW-Gondwana is proposed. The Rio de la Plata and Kalahari Cratons are considered to have become juxtaposed already by the end of the Mesoproterozoic. Early Neoproterozoic rifting led to the fragmentation of the northwestern (in today`s coordinates) Kalahari Craton and the splitting off of several small cratonic blocks. The largest of these ex-Kalahari cratonic fragments is probably the Angola Block. Smaller fragments include the Luis Alves and Curitiba microplates in eastern Brazil, several basement inliers within the Damara Belt, and an elongate fragment off the western margin, named Arachania. The main suture between the Kalahari and the Congo-So Francisco Cratons is suspected to be hidden beneath younger cover between the West Congo Belt and the Lufilian/Zambezi Belts and probably continues westwards via the Cabo Frio Terrane into the Goias magmatic arc along the Brasilia Belt. Many of the rift grabens that separated the various former Kalahari cratonic fragments did not evolve into oceanic basins, such as the Northern Nosib Rift in the Damara Belt and the Gariep rift basin. Following latest Cryogenian/early Ediacaran closure of the Brazilides Ocean between the Rio de la Plata Craton and the westernmost fragment of the Kalahari Craton, the latter, Arachania, became the locus of a more than 1,000-km-long continental magmatic arc, the Cuchilla Dionisio-Pelotas Arc. A correspondingly long back-arc basin (Marmora Basin) on the eastern flank of that arc is recognized, remnants of which are found in the Marmora Terrane-the largest accumulation of oceanic crustal material known from any of the Pan-African orogenic belts in the region. Corresponding foredeep deposits that emerged from the late Ediacaran closure of this back-arc basin are well preserved in the southern areas, i.e. the Punta del Este Terrane, the Marmora Terrane and the Tygerberg Terrane. Further to the north, present erosion levels correspond with much deeper crustal sections and comparable deposits are not preserved anymore. Closure of the Brazilides Ocean, and in consequence of the Marmora back-arc basin, resulted from a change in the Rio de la Plata plate motion when the Iapetus Ocean opened between the latter and Laurentia towards the end of the Ediacaran. Later break-up of Gondwana and opening of the modern South Atlantic would have followed largely along the axis of the Marmora back-arc basin and not along major continental sutures.
Resumo:
Severe climate changes culminating in at least three major glacial events have been recognized in the Neoproterozoic sedimentary record from many parts of the world Supportive to the global nature of these climatic shifts a considerable amount of data have been acquired from deposits exposed in Pan-African orogenic belts in southwestern and western Africa By comparison published data from the Pan-African belts in Central Africa are scarce We report here evidence of possibly two glacial events recorded in the Mintom Formation that is located on the margin of the Pan-African orogenic Yaounde belt in South-East Cameroon In the absence of reliable radiometric data only maximum and minimum age limits of 640 and 580 Ma respectively can at present be applied to the Mintom Formation The formation consists of two lithostratigraphic ensembles each subdivided in two members (i e in ascending stratigraphic order the Kol Metou Momibole and Atog Adjap Members) The basal ensemble exhibits a typical glacial to post-glacial succession It includes diamictites comprising cobbles and boulders in a massive argillaceous siltstone matrix and laminated siltstones followed by in sharp contact a 2 m-thick massive dolostone that yielded negative delta(13)C values (<-3 parts per thousand. V-PDB) similar to those reported for Marinoan cap carbonates elsewhere However uncertainty remains regarding the glacial influence on the siliciclastic facies because the diamictite is better explained as a mass-flow deposit and diagnostic features such as dropstones have not been seen in the overlying siltstones The Mintom Formation may thus provide an example of an unusual succession of non-glacial diamictite overlain by a truly glacial melt-related cap-carbonate We also report the recent discovery of ice-striated pavements on the structural surface cut in the Mintom Formation suggesting that glaciers developed after the latter had been deposited and deformed during the Pan-African orogeny Striations which consistently exhibit two principal orientations (N60 and N110) were identified in two different localities in the west of the study area on siltstones of the Kol Member and in the east on limestones of the Atog Adjap Member respectively N60-oriented striae indicate ice flow towards the WSW Assigning an age to these features remains problematical because they were not found associated with glaciogenic deposits Two hypotheses can equally be envisaged e either the striated surfaces are correlated (1) to the Gaskiers (or Neoproterozoic post-Gaskiers) glaciation and represent the youngest Ediacaran glacial event documented in the southern Yaounde belt or (2) to the Late Ordovician Hirnantian (Saharan) glaciation thereby providing new data about Hirnantian ice flows in Central Africa (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The Borborema Province in northeastern South America is a typical Brasiliano-Pan-African branching system of Neoproterozoic orogens that forms part of the Western Gondwana assembly. The province is positioned between the Sao Luis-West Africa craton to the north and the Sao Francisco (Congo-Kasai) craton to the south. For this province the main characteristics are (a) its subdivision into five major tectonic domains, bounded mostly by long shear zones, as follows: Medio Coreau, Ceara Central, Rio Grande do Norte, Transversal, and Southern; (b) the alternation of supracrustal belts with reworked basement inliers (Archean nuclei + Paleoproterozoic belts); and (c) the diversity of granitic plutonism, from Neoproterozoic to Early Cambrian ages, that affect supracrustal rocks as well as basement inliers. Recently, orogenic rock assemblages of early Tonian (1000-920 Ma) orogenic evolution have been recognized, which are restricted to the Transversal and Southern domains of the Province. Within the Transversal Zone, the Alto Pajeu terrane locally includes some remnants of oceanic crust along with island arc and continental arc rock assemblages, but the dominant supracrustal rocks are mature and immature pelitic metasedimentary and metavolcaniclastic rocks. Contiguous and parallel to the Alto Pajeu terrane, the Riacho Gravata subterrane consists mainly of low-grade metamorphic successions of metarhythmites, some of which are clearly turbiditic in origin, metaconglomerates, and sporadic marbles, along with interbedded metarhyolitic and metadacitic volcanic or metavolcaniclastic rocks. Both terrane and subterrane are cut by syn-contractional intrusive sheets of dominantly peraluminous high-K calc-alkaline, granititic to granodioritic metaplutonic rocks. The geochemical patterns of both supracrustal and intrusive rocks show similarities with associations of mature continental arc volcano-sedimentary sequences, but some subordinate intra-plate characteristics are also found. In both the Alto Pajeu and Riacho Gravata terranes, TIMS and SHRIMP U-Pb isotopic data from zircons from both metavolcanic and metaplutonic rocks yield ages between 1.0 and 0.92 Ga, which define the time span for an event of orogenic character, the Cariris Velhos event. Less extensive occurrences of rocks of Cariris Velhos age are recognized mainly in the southernmost domains of the Province, as for example in the Polo Redondo-Maranco terrane, where arc-affinity migmatite-granitic and meta-volcano-sedimentary rocks show U-Pb ages (SHRIMP data) around 0.98-0.97 Ga. For all these domains, Sm-Nd data exhibit Tom model ages between 1.9 and 1.1 Ga with corresponding slightly negative to slightly positive epsilon(Nd)(t) values. These domains, along with the Borborema Province as a whole, were significantly affected by tectonic and magmatic events of the Brasiliano Cycle (0.7-0.5 Ga), so that it is possible that there are some other early Tonian rock assemblages which were completely masked and hidden by these later Brasiliano events. Cariris Velhos processes are younger than the majority of orogenic systems at the end of Mesoproterozoic Era and beginning of Neoproterozoic throughout the world, e.g. Irumide belt, Kibaride belt and Namaqua-Natal belt, and considerably younger than those of the youngest orogenic process (Ottawan) in the Grenvillian System. Therefore, they were probably not associated with the proposed assembly of Rodinia. We suggest, instead, that Cariris Velhos magmatism and tectonism could have been related to a continental margin magmatic arc, with possible back-arc associations, and that this margin may have been a short-lived (<100 m.y.) leading edge of the newly assembled Rodinia supercontinent. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Borborema Province, in the NE of Brazil, is a rather complex piece in the Brazil-Africa puzzle as it represents the junction of the Dahomeyide/Pharusian, Central African, Aracuai and Brasilia fold belts located between the West-African/Sao Luis, Congo/Sao Francisco and Amazonas craton. The correlation between the Dahomeyides from W-Africa (Ghana, Benin, Togo, and Mali) and the Borborema Province involves the Medio Coreau and Central Ceara domains. The inferred continuation of the main oceanic suture zone exposed in the Dahomeyides of W Africa is buried beneath the Phanerozoic Parnaiba Basin in Brazil (northwest of the Medio Coreau domain) where some high density gravity anomalies may represent hidden remnants of an oceanic suture. In addition to this major suture a narrow, nearly continuous strip composed of mainly mafic pods containing relics of eclogite-facies assemblages associated with partially migmatized granulite-facies metapelitic gneisses has been found further east in the NW Borborema Province. These high pressure mafic rocks, interpreted as retrograded eclogites, are located between the Transbrasiliano Lineament and the Santa Quiteria continental arc and comprise primitive to evolved arc-related rocks with either arc- or MORB-type imprints that can indicate either deep subduction of oceanic lithosphere or roots of continental and oceanic magmatic arcs. Average peak P-T conditions under eclogite-facies metamorphism (T=770 degrees C and P = 17.3 kbar) were estimated using garnet-clinopyroxene thermometry and Jd content in clinopyroxene. Transition to granulite-facies conditions, as well as later widespread re-equilibration under amphibolite facies, were registered both in the basic and the metapelitic rocks and suggest a clockwise P-T path characterized by an increase in temperature followed by strong decompression. A phenomenon possibly related to the exhumation of a highly thickened crust associated with the suturing of the Medio Coreau and Central Ceara domains, two distinct crustal blocks separated by the Transbrasiliano Lineament. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
This paper examines the extensive regions of Proterozoic accretionary belts that either formed most of the Amazonian Craton, or are marginal to its southeastern border. Their overall geodynamic significance is considered taking into account the paleogeographic reconstruction of Columbia, Rodinia and Gondwana. Amazonia would be part of Columbia together With Laurentia, North China and Baltica, forming a continuous, continental landmass linked by the Paleo- to Mesoproterozoic mobile belts that constitute large portions of it. The Rodinia supercontinent was formed in the Mesoproterozoic by the agglutination of the existing cratonic fragments, such as Laurentia and Amazonia, during contemporary continental collisions worldwide. The available paleomagnetic data suggest that Laurentia and Amazonia remained attached until at least 600 Ma. Since all other cratonic units Surrounding Laurentia have already rifted away by that time, the separation between Amazonia and Laurentia marks the final break-up of Rodinia with the opening of the lapetus ocean. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The photocatalytic degradation of Janus Green B azo dye over silver modified titanium dioxide films was investigated by surface-enhanced Raman spectroscopy (SERS). An optimized SERS-active substrate was employed to study the photodegradation reaction of Janus Green B. Considering that photocatalytic degradation processes of organic molecules adsorbed on TiO2 might involve either their oxidation or reduction reaction, the vibrational spectroelectrochemical study of the dye was also performed, in order to clarify the transformations involved in initial steps of its photochemical decomposition. In order to understand the changes in Raman spectra of Janus Green B after photodegradation and/or electrochemical processes, a vibrational assignment of the main Raman active modes of the dye was carried out, based on a detailed resonance Raman profile. Products formed by electrochemical and photochemical degradation processes were compared. The obtained results revealed that the first steps of the degradation process of Janus Green B involve a reductive mechanism. (C) 2007 Published by Elsevier B.V.
Resumo:
Time-dependent fluctuations in surface-enhanced Raman scattering (SERS) intensities were recorded from a roughened silver electrode immersed in diluted solutions of rhodamine 6G (R6G) and congo red (CR). These fluctuations were attributed to a small number of SERS-active molecules probing regions of extremely high electromagnetic field (hot spots) at the nanostructured surface. The time-dependent distribution of SERS intensities followed a tailed statistics at certain applied potentials, which has been linked to single-molecule dynamics. The shape of the distribution was reversibly tuned by the applied voltage. Mixtures of both dyes, R6G and CR, at low concentrations were also investigated. Since R6G is a cationic dye and CR is an anionic dye, the statistics of the SERS intensity distribution of either dye in a mixture were independently controlled by adjusting the applied potential. The potential-controlled distribution of SERS intensities was interpreted by considering the modulation of the surface coverage of the adsorbed dye by the interfacial electric field. This interpretation was supported by a two-dimensional Monte Carlo simulation that took into account the time evolution of the surface configuration of the adsorbed species and their probability to populate a hypothetical hot spot. The potential-controlled SERS dynamics reported here is a first step toward the spectroelectrochemical investigation of redox processes at the single-molecule level by SERS.