240 resultados para COMPLEX DEVELOPMENTAL DISORDER
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The objective of the study was to evaluate saliva flow rate, buffer capacity, pH levels, and dental caries experience (DCE) in autistic individuals, comparing the results with a control group (CG). The study was performed on 25 noninstitutionalized autistic boys, divided in two groups. G1 composed of ten children, ages 3-8. G2 composed of 15 adolescents ages 9-13. The CG was composed of 25 healthy boys, randomly selected and also divided in two groups: CG3 composed of 14 children ages 4-8, and CG4 composed of 11 adolescents ages 9-14. Whole saliva was collected under slight suction, and pH and buffer capacity were determined using a digital pHmeter. Buffer capacity was measured by titration using 0.01 N HCl, and the flow rate expressed in ml/min, and the DCE was expressed by decayed, missing, and filled teeth (permanent dentition [DMFT] and primary dentition [dmft]). Data were plotted and submitted to nonparametric (Kruskal-Wallis) and parametric (Student`s t test) statistical tests with a significance level less than 0.05. When comparing G1 and CG3, groups did not differ in flow rate, pH levels, buffer capacity, or DMFT. Groups G2 and CG4 differ significantly in pH (p = 0.007) and pHi = 7.0 (p = 0.001), with lower scores for G2. In autistic individuals aged 3-8 and 9-13, medicated or not, there was no significant statistical difference in flow rate, pH, and buffer capacity. The comparison of DCE among autistic children and CG children with deciduous (dmft) and mixed/permanent decayed, missing, and filled teeth (DMFT) did not show statistical difference (p = 0.743). Data suggest that autistic individuals have neither a higher flow rate nor a better buffer capacity. Similar DCE was observed in both groups studied.
Resumo:
Background: Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus) microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the pathogen is transmitted to cattle. In previous studies, we reported modification of gene expression in Dermacentor variabilis and cultured Ixodes scapularis tick cells in response to infection with A. marginale. In these studies, we extended these findings by use of a functional genomics approach to identify genes differentially expressed in R. microplus male salivary glands in response to A. marginale infection. Additionally, a R. microplus-derived cell line, BME26, was used for the first time to also study tick cell gene expression in response to A. marginale infection. Results: Suppression subtractive hybridization libraries were constructed from infected and uninfected ticks and used to identify genes differentially expressed in male R. microplus salivary glands infected with A. marginale. A total of 279 ESTs were identified as candidate differentially expressed genes. Of these, five genes encoding for putative histamine-binding protein (22Hbp), von Willebrand factor (94Will), flagelliform silk protein (100Silk), Kunitz-like protease inhibitor precursor (108Kunz) and proline-rich protein BstNI subfamily 3 precursor (7BstNI3) were confirmed by real-time RT-PCR to be down-regulated in tick salivary glands infected with A. marginale. The impact of selected tick genes on A. marginale infections in tick salivary glands and BME26 cells was characterized by RNA interference. Silencing of the gene encoding for putative flagelliform silk protein (100Silk) resulted in reduced A. marginale infection in both tick salivary glands and cultured BME26 cells, while silencing of the gene encoding for subolesin (4D8) significantly reduced infection only in cultured BME26 cells. The knockdown of the gene encoding for putative metallothionein (93 Meth), significantly up-regulated in infected cultured BME26 cells, resulted in higher A. marginale infection levels in tick cells. Conclusions: Characterization of differential gene expression in salivary glands of R. microplus in response to A. marginale infection expands our understanding of the molecular mechanisms at the tick-pathogen interface. Functional studies suggested that differentially expressed genes encoding for subolesin, putative von Willebrand factor and flagelliform silk protein could play a role in A. marginale infection and multiplication in ticks. These tick genes found to be functionally relevant for tick-pathogen interactions will likely be candidates for development of vaccines designed for control of both ticks and tick-borne pathogens.
Resumo:
Alagille syndrome is a rare developmental disorder combining bile duct paucity, congenital cardiopathy, facial dysmorphy, vertebrae defects, and ocular abnormalities; and frequent renal abnormalities. It does not usually predispose to malignancies. Nephroblastoma has been observed in many developmental disorders, but never in Alagille syndrome. We report two original cases of nephroblastoma associated to Alagille syndrome. We identified a new V136G JAG1 missense mutation in one patient and a constitutional deletion of 20p12 in the other. In one nephroblastoma an additional somatic 1p36 deletion was present. The link between Alagille syndrome, JAG1 alterations and nephroblastoma is discussed.
Resumo:
Genetic mutations responsible for oblique facial clefts (ObFC), a unique class of facial malformations, are largely unknown. We show that loss-of-function mutations in SPECC1L. are pathogenic for this human developmental disorder and that SPECC1L is a critical organizer of vertebrate facial morphogenesis. During murine embryogenesis, Speed 1 1 is expressed in cell populations of the developing facial primordial, which proliferate and fuse to form the face. In zebrafish, knockdown of a SPECC1L homolog produces a faceless phenotype with loss of jaw and facial structures, and knockdown in Drosophila phenocopies mutants in the integrin signaling pathway that exhibit cell-migration and -adhesion defects. Furthermore, in mammalian cells, SPECC1L colocalizes with both tubulin and actin, and its deficiency results in defective actin-cytoskeleton reorganization, as well as abnormal cell adhesion and migration. Collectively, these data demonstrate that SPECC1L functions in actin-cytoskeleton reorganization and is required for proper facial morphogenesis.
Resumo:
Nonsyndromic cleft lip and palate (NSCL/P) is a complex disease resulting from failure of fusion of facial primordia, a complex developmental process that includes the epithelial-mesenchymal transition (EMT). Detection of differential gene transcription between NSCL/P patients and control individuals offers an interesting alternative for investigating pathways involved in disease manifestation. Here we compared the transcriptome of 6 dental pulp stem cell (DPSC) cultures from NSCL/P patients and 6 controls. Eighty-seven differentially expressed genes (DEGs) were identified. The most significant putative gene network comprised 13 out of 87 DEGs of which 8 encode extracellular proteins: ACAN, COL4A1, COL4A2, GDF15, IGF2, MMP1, MMP3 and PDGFa. Through clustering analyses we also observed that MMP3, ACAN, COL4A1 and COL4A2 exhibit co-regulated expression. Interestingly, it is known that MMP3 cleavages a wide range of extracellular proteins, including the collagens IV, V, IX, X, proteoglycans, fibronectin and laminin. It is also capable of activating other MMPs. Moreover, MMP3 had previously been associated with NSCL/P. The same general pattern was observed in a further sample, confirming involvement of synchronized gene expression patterns which differed between NSCL/P patients and controls. These results show the robustness of our methodology for the detection of differentially expressed genes using the RankProd method. In conclusion, DPSCs from NSCL/P patients exhibit gene expression signatures involving genes associated with mechanisms of extracellular matrix modeling and palate EMT processes which differ from those observed in controls. This comparative approach should lead to a more rapid identification of gene networks predisposing to this complex malformation syndrome than conventional gene mapping technologies.
Resumo:
Introduction: Research suggests that obsessive-compulsive disorder (OCD) is not a unitary entity, but rather a highly heterogeneous condition, with complex and variable clinical manifestations. Objective: The aims of this study were to compare clinical and demographic characteristics of OCD patients with early and late age of onset of obsessive-compulsive symptoms (OCS); and to compare the same features in early onset OCD with and without tics. The independent impact of age at onset and presence of tics on comorbidity patterns was investigated. Methods: Three hundred and thirty consecutive outpatients meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for OCD were evaluated: 160 patients belonged to the ""early onset"" group (EOG): before 11 years of age, 75 patients had an ""intermediate onset"" (IOG), and 95 patients were from the ""late onset"" group (LOG): after 18 years of age. From the 160 EOG, 60 had comorbidity with tic disorders. The diagnostic instruments used were: the Yale-Brown Obsessive Compulsive Scale and the Dimensional Yale-Brown Obsessive Compulsive Scale (DY-BOCS), Yale Global Tics Severity Scale; and Structured Clinical Interview for DSM-IV Axis I Disorders-patient edition. Statistical tests used were: Mann-Whitney, full Bayesian significance test, and logistic regression. Results: The EOG had a predominance of males, higher frequency of family history of OCS, higher mean scores on the ""aggression/violence"" and ""miscellaneous"" dimensions, and higher mean global DY-BOCS scores. Patients with EOG without tic disorders presented higher mean global DY-BOCS scores and higher mean scores in the ""contamination/cleaning"" dimension. Conclusion: The current results disentangle some of the clinical overlap between early onset OCD with and without tics. CNS Spectr. 2009; 14(7):362-370
Resumo:
In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G > A and c.707T > C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dopa.
Resumo:
Objective: High levels of domestic violence, mental illness, and alienation from authorities are associated with high incidence of children/adolescents living on the streets in low and middle income countries. The Equilibrium Project (Programa Equilibrio) was created to facilitate social reintegration through a virtual partnership between an academic psychiatric institute and highly vulnerable children and adolescents living on the streets, in group shelter with supervision, and in other high risk situations. Methods: Descriptive presentation of qualitative data and analysis of preliminary empirical data collected over a 24-month period. Results: Dialogue between academic professionals, street children, and city officials shaped The Equilibrium Project over the last 2 years. The program has progressively moved from a professional clinic setting to a community-based but protected activity center with recreational and professional services and an emphasis on linkage with social service agencies, city government and law enforcement officials in an academic research context. A total of 351 patients have been served of whom virtually all were neglected by their parents, 58.4% report physical or sexual abuse, 88.89% have been diagnosed with a psychiatric disorder, 40.4% drug use. After 2 years of operation, 63.5% (n = 223) successfully completed or continue in treatment and 34.8% (n = 122) were reunited with their families. Conclusions and Practice implications: Program development guided by consumer input led to a successful program offering professional services in a protected community setting that facilitates social reintegration by providing ""go between"" services integrating relationships between alienated consumers and formal psychiatric, pediatric, social service, and criminal justice systems. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The few studies applying single-voxel(1)H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low N-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol / phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study was to evaluate NAA, glycerophosphocholine plus phosphocholine (GPC+PC) and PCr+Cr in various frontal cortical areas in children and adolescents with BD. We hypothesized that NAA levels within the prefrontal cortex are lower in BD patients than in healthy controls, indicating neurodevelopmental alterations in the former. Method: We studied 43 pediatric patients with DSM-IV BD (19 female, mean age 13.2 +/- 2.9 years) and 38 healthy controls (79 female, mean age 13.9 +/- 2.7 years). We conducted multivoxel in vivo (1)H spectroscopy measurements at 1.5 Tesla using a long echo time of 272 ms to obtain bilateral metabolite levels from the medial prefrontal cortex (MPFC), DLPFC (white and gray matter), cingulate (anterior and posterior), and occipital lobes. We used the nonparametric Mann-Whitney U test to compare neurochemical levels between groups. Results: In pediatric BD patients, NAA and GPC+PC levels in the bilateral MPFC, and PCr+Cr levels in the left MPFC were lower than those seen in the controls. In the left DLPFC white matter, levels of NAA and PCr+Cr were also lower in BD patients than in controls. Conclusions: Lower NAA and PCr+Cr levels in the PFC of children and adolescents with BD may be indicative of abnormal dendritic arborization and neuropil, suggesting neurodevelopmental abnormalities. J. Am. Acad. Child Adolesc. Psychiatry, 2011;50(1):85-94.
Resumo:
Oocyte maturation is a long process during which oocytes acquire their intrinsic ability to support the subsequent stages of development in a stepwise manner, ultimately reaching activation of the embryonic genome. This process involves complex and distinct, although linked, events of nuclear and cytoplasmic maturation. Nuclear maturation mainly involves chromosomal segregation, whereas cytoplasmic maturation involves organelle reorganization and storage of mRNAs, proteins and transcription factors that act in the overall maturation process, fertilization and early embryogenesis. Thus, for didactic purposes, we subdivided cytoplasmic maturation into: (1) organelle redistribution, (2) cytoskeleton dynamics, and (3) molecular maturation. Ultrastructural analysis has shown that mitochondria, ribosomes, endoplasmic reticulum, cortical granules and the Golgi complex assume different positions during the transition from the germinal vesicle stage to metaphase II. The cytoskeletal microfilaments and microtubules present in the cytoplasm promote these movements and act on chromosome segregation. Molecular maturation consists of transcription, storage and processing of maternal mRNA, which is stored in a stable, inactive form until translational recruitment. Polyadenylation is the main mechanism that initiates protein translation and consists of the addition of adenosine residues to the 3` terminal portion of mRNA. Cell cycle regulators, proteins, cytoplasmic maturation markers and components of the enzymatic antioxidant system are mainly transcribed during this stage. Thus, the objective of this review is to focus on the cytoplasmic maturation process by analyzing the modifications in this compartment during the acquisition of meiotic competence for development. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from similar to 250 kb to similar to 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.
Resumo:
Autism spectrum disorders (ASD) is a group of behaviorally defined neuro developmental disabilities characterized by multiple genetic etiologies and a complex presentation. Several studies suggest the involvement of the serotonin system in the development of ASD, but only few have investigated serotonin receptors. We have performed a case-control and a family-based study with 9 polymorphisms mapped to two serotonin receptor genes (HTR1B and HTR2C) in 252 Brazilian male ASD patients of European ancestry. These analyses showed evidence of undertransmission of the HTR1B haplotypes containing alleles -161G and -261A at HTR1B gene to ASD (P=0.003), but no involvement of HTR2C to the predisposition to this disease. Considering the relatively low level of statistical significance and the power of our sample, further studies are required to confirm the association of these serotonin-related genes and ASD. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Over recent years nitric oxide (NO) not only has appeared as an important endogenous signaling molecule in plants and as a mediator in many developmental and physiological processes, but has also received recognition as a plant hormone. The impressive recent achievements in elucidating the role of NO in plants have come about by the application of NO donors. The aim herein was to study the effects of the different NO donors, sodium nitroprusside (SNP) and the nitrosyl ethylenediaminetetraacetate ruthenium(II) ([Ru(NO)(Hedta)]) complex on cellular growth in embryogenic suspension cultures of Araucaria angustifolia. Appraisal of our data revealed that [Ru(NO)(Hedta)] stimulated about 60% of cellular growth in embryogenic suspension cultures of A. angustifolia, with results similar to those observed with the SNP donor. Nevertheless, application of the NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) inhibited this cellular growth in both. Cellular growth was correlated with an increase in endogenous NO levels after 21 days of culture, especially in treatments with NO donors. Our results demonstrated that the [Ru(NO)Hedta] complex could possibly be used as a NO donor in plants. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.