91 resultados para COMMUNICATION-NETWORKS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the last few years, the evolution of fieldbus and computers networks allowed the integration of different communication systems involving both production single cells and production cells, as well as other systems for business intelligence, supervision and control. Several well-adopted communication technologies exist today for public and non-public networks. Since most of the industrial applications are time-critical, the requirements of communication systems for remote control differ from common applications for computer networks accessing the Internet, such as Web, e-mail and file transfer. The solution proposed and outlined in this work is called CyberOPC. It includes the study and the implementation of a new open communication system for remote control of industrial CNC machines, making the transmission delay for time-critical control data shorter than other OPC-based solutions, and fulfilling cyber security requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Video adaptation is an extensively explored content providing technique aimed at appropriately suiting several usage scenarios featured by different network requirements and constraints, user`s terminal and preferences. However, its usage in high-demand video distribution systems, such as CNDs, has been badly approached, ignoring several aspects of optimization of network use. To address such deficiencies, this paper presents an approach for implementing the adaptation service by exploring the concept of overlay services networks. As a result of demonstrate the benefits of this proposal, it is made a comparison of this proposed adaptation service with other strategies of video adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-way master-slave (OWMS) chain networks are widely used in clock distribution systems due to their reliability and low cost. As the network nodes are phase-locked loops (PLLs), double-frequency jitter (DFJ) caused by their phase detectors appears as an impairment to the performance of the clock recovering process found in communication systems and instrumentation applications. A nonlinear model for OWMS chain networks with P + 1 order PLLs as slave nodes is presented, considering the DFJ. Since higher order filters are more effective in filtering DFJ, the synchronous state stability conditions for an OWMS chain network with third-order nodes are derived, relating the loop gain and the filter coefficients. By using these conditions, design examples are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of clock signals throughout the nodes of a network is essential for several applications. in control and communication with the phase-locked loop (PLL) being the component for electronic synchronization process. In systems with master-slave (MS) strategies, the PLLs are the slave nodes responsible for providing reliable clocks in all nodes of the network. As PLLs have nonlinear phase detection, double-frequency terms appear and filtering becomes necessary. Imperfections in filtering process cause oscillations around the synchronous state worsening the performance of the clock distribution process. The behavior of one-way master-slave (OWMS) clock distribution networks is studied and performances of first- and second-order filter processes are compared, concerning lock-in ranges and responses to perturbations of the synchronous state. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Navigation is a broad topic that has been receiving considerable attention from the mobile robotic community over the years. In order to execute autonomous driving in outdoor urban environments it is necessary to identify parts of the terrain that can be traversed and parts that should be avoided. This paper describes an analyses of terrain identification based on different visual information using a MLP artificial neural network and combining responses of many classifiers. Experimental tests using a vehicle and a video camera have been conducted in real scenarios to evaluate the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topology of real-world complex networks, such as in transportation and communication, is always changing with time. Such changes can arise not only as a natural consequence of their growth, but also due to major modi. cations in their intrinsic organization. For instance, the network of transportation routes between cities and towns ( hence locations) of a given country undergo a major change with the progressive implementation of commercial air transportation. While the locations could be originally interconnected through highways ( paths, giving rise to geographical networks), transportation between those sites progressively shifted or was complemented by air transportation, with scale free characteristics. In the present work we introduce the path-star transformation ( in its uniform and preferential versions) as a means to model such network transformations where paths give rise to stars of connectivity. It is also shown, through optimal multivariate statistical methods (i.e. canonical projections and maximum likelihood classification) that while the US highways network adheres closely to a geographical network model, its path-star transformation yields a network whose topological properties closely resembles those of the respective airport transportation network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients using obturator prostheses often present denture-induced stomatitis. In order to detect the presence of oral Candida albicans in patients with oronasal communications and to evaluate the effectiveness of a topical antifungal treatment, cytological smears obtained from the buccal and palatal mucosa of 10 adult patients, and from the nasal acrylic surface of their obturator prostheses were examined. A therapeutic protocol comprising the use of oral nystatin (Mycostatin®) and prosthesis disinfection with sodium hypochlorite was prescribed for all patients. Seven patients were positive for C. albicans in the mucosa, with 1 negative result for the prosthetic surface in this group of patients. Post-treatment evaluation revealed the absence of C. albicans on prosthesis surface and on the oral mucosa of all patients. The severity of the candidal infection was significantly higher in the palatal mucosa than in the buccal mucosa, but similar in the palatal mucosa and prosthesis surface, indicating that the mucosa underlying the prosthesis is more susceptible to infection. The therapeutic protocol was effective in all cases, which emphasizes the need for denture disinfection in order to avoid reinfection of the mucosa.