2 resultados para CHAPLYGIN-GAS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We propose a new class of accelerating world models unifying the cosmological dark sector (dark matter and dark energy). All the models are described by a simplified version of the Chaplygin gas quartessence cosmology. It is found that even for Omega(k) not equal 0, this quartessence scenario depends only on a pair of parameters which can severely be constrained by the cosmological tests. As an example we perform a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations. In our analysis we have considered the SNe type la Union sample compiled by Kowalski et al. [M. Kowalski et al., Astrophys. J. 686 (2008) 749, arXiv:0804.4142]. At 95.4% (c.l.), we find for BAD + Union sample, alpha = 0.81(-0.04)(+0.04) and Omega(Q4) = 1.15(-0.17)(+0.16) The best-fit for this simplified quartessence scenario is a spatially closed Universe and its reduced chi(2) is exactly the same of the flat concordance model (Lambda CDM). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new class of accelerating cosmological models driven by a one-parameter version of the general Chaplygin-type equation of state is proposed. The simplified version is naturally obtained from causality considerations with basis on the adiabatic sound speed vs plus the observed accelerating stage of the universe. We show that very stringent constraints on the unique free parameter a describing the simplified Chaplygin model can be obtained from a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations (BAO). In our analysis we have considered separately the SNe type la gold sample measured by [A.G. Riess et al.. Astrophys. J. 607 (2004) 665] and the supernova legacy survey (SNLS) from [P. Astier et al., Astron. Astrophys. 447 (2006) 31]. At 95.4% (c.l.), we find for BAO + gold sample, 0.91 <= alpha <= 1.0 and Omega(m) = 0.28(-0.048)(+0.043) while BAO + SNLS analysis provides 0.94 <= alpha <= 1.0 and Omega(m) = 0.27(-0.045)(+0.048). (C) 2008 Elsevier B.V. All rights reserved.