49 resultados para CELLULAR-DRUG RESISTANCE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: There are few studies on HIV subtypes and primary and secondary antiretroviral drug resistance (ADR) in community-recruited samples in Brazil. We analyzed HIV clade diversity and prevalence of mutations associated with ADR in men who have sex with men in all five regions of Brazil. Methods: Using respondent-driven sampling, we recruited 3515 men who have sex with men in nine cities: 299 (9.5%) were HIV-positive; 143 subjects had adequate genotyping and epidemiologic data. Forty-four (30.8%) subjects were antiretroviral therapy-experienced (AE) and 99 (69.2%) antiretroviral therapy-naive (AN). We sequenced the reverse transcriptase and protease regions of the virus and analyzed them for drug resistant mutations using World Health Organization guidelines. Results: The most common subtypes were B (81.8%), C (7.7%), and recombinant forms (6.9%). The overall prevalence of primary ADR resistance was 21.4% (i.e. among the AN) and secondary ADR was 35.8% (i.e. among the AE). The prevalence of resistance to protease inhibitors was 3.9% (AN) and 4.4% (AE); to nucleoside reverse transcriptase inhibitors 15.0% (AN) and 31.0% (AE) and to nonnucleoside reverse transcriptase inhibitors 5.5% (AN) and 13.2% (AE). The most common resistance mutation for nucleoside reverse transcriptase inhibitors was 184V (17 cases) and for nonnucleoside reverse transcriptase inhibitors 103N (16 cases). Conclusions: Our data suggest a high level of both primary and secondary ADR in men who have sex with men in Brazil. Additional studies are needed to identify the correlates and causes of antiretroviral therapy resistance to limit the development of resistance among those in care and the transmission of resistant strains in the wider epidemic.
Resumo:
Methods. We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco, California, and Sao Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates between mutation classes with use of a parametric proportional hazards model. Results. Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval [CI], 14.7-408.2; P < .0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71 log(10) copies/mL; 95% CI, .90-3.25 log(10) copies/mL; P = .11). We found substantial person-to-person variability in mutation replacement rates not accounted for by viral load or mutation class (P < .0001). Conclusions. The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement and warrant further study.
Resumo:
Background. Increased activity of multidrug resistance (MDR) genes has been associated with treatment failure in acute leukemias, although with controversial reports. The objective of the present study was to assess the expression profile of the genes related to MDR: ABCB1, ABCC1, ABCC3, ABCC2, and LRP/MVP in terms of the clinical and biological variable and the survival of children with acute lymphoblastic leukemia (ALL). Procedure. The levels of mRNA expression of the drug resistance genes ABCB1, ABCC1, ABCC3, ABCG2, and LRP/MVP were analyzed by quantitative real-time PCR using the median Values as cut-off points, in consecutive samples from 140 children with ALL at diagnosis. Results. Expression levels of the ABCG2 gene in the patient group as a whole (P=0.05) and of the ABCG2 and ABCC1 genes in patients classified as being at high risk were associated with higher rates of 5-year event-free survival (EFS) (P=0.04 and P=0.01). Expression levels of the ABCG2 gene below the median were associated with a greater chance of death related to treatment toxicity for the patient group as a whole (P=0.009) and expression levels below the median of the ABCG2 and ABCC1 genes were associated with a greater chance of death due to treatment toxicity for the high-risk group (P=0.02 and P=0.03, respectively). Conclusion. The present data suggest a low participation of the drug efflux genes in treatment failure in patients with childhood ALL. However, the low expression of some of these genes may be associated with a higher death risk related to treatment toxicity. Pediatr Blood Cancer 2009;53:996-1004. (C) 2009 Wiley-Liss, Inc.
Resumo:
There is a little-noticed trend involving human immunodeficiency virus (HIV)-infected patients suspected of having tuberculosis: the triple-treatment regimen recommended in Brazil for years has been potentially ineffective in over 30% of the cases. This proportion may be attributable to drug resistance (to at least 1 drug) and/or to infection with non-tuberculous mycobacteria. This evidence was not disclosed in official statistics, but arose from a systematic review of a few regional studies in which the diagnosis was reliably confirmed by mycobacterial culture. This paper clarifies that there has long been ample evidence for the potential benefits of a four-drug regimen for co-infected patients in Brazil and it reinforces the need for determining the species and drug susceptibility in all positive cultures from HIV-positive patients.
Resumo:
Entry inhibitor is a new class of drugs that target the viral envelope protein. This region is variable; hence resistance to these drugs may be present before treatment. The aim of this study was to analyze the frequency of patients failing treatment with transcriptase reverse and protease inhibitors that would respond to the entry inhibitors Enfuvirtide, Maraviroc, and BMS-806. The study included 100 HIV-1 positive patients from one outpatient clinic in the city of Sao Paulo, for whom a genotype test was requested due to treatment failure. Proviral DNA was amplified and sequenced for regions of gp120 and gp41. A total of 80 could be sequenced and from those, 73 (91.3%), 5 (6.3%) and 2 (2.5%) were classified as subtype B, F, and recombinants (B/F and B/C), respectively. CXCR4 co-receptor use was predicted in 30% of the strains. Primary resistance to Enfuvirtide was found in 1.3%, following the AIDS Society consensus list, and 10% would be considered resistant if a broader criterion was used. Resistance to BMS-806 was higher; 6 (7.5%), and was associated to non-B strains. Strikingly, 27.5% of samples harbored one or more mutation among A316T, I323V, and S405A, which have been related to decreased susceptibility of Maraviroc; 15% of them among viruses predictive to be R5. A more common mutation was A316T, which was associated to the Brazilian B strain harboring the GWGR motif at the tip of V3 loop and their derivative sequences. These results may be impact guidelines for genotype testing and treatment in Brazil.
Resumo:
Resistance-associated mutations (RAMs) in plasma samples from HIV-1-infected women who received antiretroviral (ARV) prophylaxis during pregnancy was assessed and correlated with the detection of RAMs in peripheral blood mononuclear cells (PMBCs). The study population was composed of HIV-1-infected women enrolled in a prospective cohort study in Latin America and the Caribbean (NISDI Perinatal Study) as of March 1, 2005, who were diagnosed with HIV-1 infection during the current pregnancy, who received ARVs during pregnancy for prevention of mother-to-child transmission of HIV-1, and who were followed through at least the 6-12 week postpartum visit. Plasma samples collected at enrollment during pregnancy and at 6-12 weeks postpartum were assayed for RAMs. Plasma results were compared to previously described PBMC results from the same study population. Of 819 enrolled subjects, 197 met the eligibility criteria. Nucleic acid amplification was accomplished in 123 plasma samples at enrollment or 6-12 weeks postpartum, and RAMs were detected in 22 (17.9%; 95% CI: 11.7-25.9%). Previous analyses had demonstrated detection of RAMs in PBMCs in 19 (16.1%). There was high concordance between RAMs detected in plasma and PBMC samples, with only eight discordant pairs. The prevalence of RAMs among these pregnant, HIV-1-infected women is high (>15%). Rates of detection of RAMs in plasma and PBMC samples were similar.
Resumo:
The taxane docetaxel is currently the most effective chemotherapeutic drug for the treatment of advanced breast cancer. However, a considerable proportion of breast cancer patients do not respond positively to docetaxel. The mechanisms of docetaxel resistance are poorly understood. Overexpression of ERBB2 occurs in 15-30% of breast tumors and is associated with chemoresistance to a variety of anticancer drugs. In the present study, we sought to identify genes involved in ERBB2-mediated chemoresistance to docetaxel. We generated SAGE libraries from two human mammary cell lines expressing basal (HB4a) and high (C5.2) levels of ERBB2 before and after intensive exposure to docetaxel and identified potential ERBB2 target genes implicated in a variety of cellular processes including cell proliferation, cell adhesion, apoptosis and cytoskeleton organization. Comparison of the transcriptome of the cell lines before and after docetaxel exposure revealed substantially different expression patterns. Twenty-one differentially expressed genes between HB4a and C5.2 cell lines, before and after docetaxel treatment, were further analyzed by qPCR. The alterations in the expression patterns in HB4a and C5.2 cell lines in response to docetaxel treatment observed by SAGE analysis were confirmed by qPCR for the majority of the genes analyzed. Our study provides a comprehensive view of the expression changes induced in two human mammary cells expressing different levels of ERBB2 in response to docetaxel that could contribute to the elucidation of the mechanisms involved in ERBB2-mediated chemoresistance in breast cancer.
Resumo:
Ergosterol is an important compound responsible to maintain integrity and fluidity of Leishmania spp. membranes. Starting from an overexpression/selection method, our group has isolated and mapped nine different loci of Leishmania (L.) major related to resistance against two inhibitors of the ergosterol biosynthesis pathway, terbinafine (TBF) and itraconazole (ITZ). Individual functional analysis after overexpression induction of these loci in the presence of TBF and/or ITZ [or the ITZ analog ketoconazole (CTZ)] have shown low but significant levels of resistance after transfection into L. major wild-type parasites. In this work, we have shown the insert mapping and chromosomal identification of one of these loci (cosItz2). Functional analysis experiments associated with chromosomal localization by comparison at genomic database allowed us to identify two prospective gene-protein systems not related to the ergosterol biosynthesis and capable to confer wild-type cells resistance to ITZ-CTZ after transfection. We expected that this approach can open new insights for a better understanding of mechanisms of ITZ-CTZ action and resistance in Leishmania resulting in new strategies for the leishmaniasis treatment.
Resumo:
The goal of this work was to compare the differences between human immunodeficiency Virus type 1 (HIV-1) of B and F1 Subtypes in the acquisition of major and rninot- protease inhibitor (P1)-associated resistance mutations and of other polymorphisms at the protease (PR) gene, through a cross sectional Study. PR sequences from subtypes B and F1 isolates matched according to P1 exposure time from Brazilian patients were included in this study. Sequences were separated in four groups: 24 and 90 from children and 141 and 99 from adults infected with isolates of subtypes F1 and B, respectively. For comparison, 211 subype B and 79 subtype F1 PR sequences from drug-naive individuals Were included. Demographic and clinical data were similar among B- and F1-infected patients. In untreated patients, Mutations L1OV, K20R, and M361 were more frequent in subtype F1, while L63P, A7IT, and V771 were more prevalent in Subtype B. In treated patients, K20M, D30N, G73S, 184V, and L90M, were More prevalent in subtype B, and K20T and N88S Were more prevalent in Subtype F1. A higher proportion of subtype F1 than Of subtype B Strains Containing other polymorphisms was observed. V82L mutation was Present With increased frequency in isolates from children compared to isolates from adults infected with both subtypes. We could observe a faster resistance emergence in children than in adults, during treatment with protease inhibitors. This data provided evidence that, although rates of overall drug resistance do not differ between subtypes B and F1, the former accumulates resistance at higher proportion in specific amino acid positions of protease when compared to the latter. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Although fungi do not cause outbreaks or pandemics, the incidence of severe systemic fungal infections has increased significantly, mainly because of the explosive growth in the number of patients with compromised immune system. Thus, drug resistance in pathogenic fungi, including dermatophytes, is gaining importance. The molecular aspects involved in the resistance of dermatophytes to marketed antifungals and other cytotoxic drugs, such as modifications of target enzymes, over-expression of genes encoding ATP-binding cassette (ABC) transporters and stress-response-related proteins are reviewed. Emphasis is placed on the mechanisms used by dermatophytes to overcome the inhibitory action of terbinafine and survival in the host environment. The relevance of identifying new molecular targets, of expanding the understanding about the molecular mechanisms of resistance and of using this information to design new drugs or to modify those that have become ineffective is also discussed.
Resumo:
SETTING: Tuberculosis (TB) drug resistance survey in six hospitals in Rio de Janeiro, Brazil. OBJECTIVE: To estimate resistance to at least one drug (DR) and multidrug resistance (MDR) and identify associated factors. DESIGN: One-year cross-sectional survey. Hospitals were included as a convenience sample. RESULTS: Of 595 patients investigated, 156 (26.2%) had previously undergone anti-tuberculosis treatment, 433 (72.8%) were not previously treated and information on the remaining 6 was not available. Overall, DR and MDR rates were high, at respectively 102 (17.1%, 95%CI 14.3-20.5) and 44 (7.4%, 95%CI 5.5-9.9) cases. Among individuals not previously treated, 17 had MDR (3.9%, 95%CI 2.4-6.3) and diagnosis in a TB reference hospital was independently associated with MDR (prevalence ratio [PR] 3.3, 95%CI 1.2-8.7) after multivariate analysis. Among previously treated individuals, 27 had MDR (17.3%, 95%CI 11.7-24.2). MDR-TB was independently associated with diagnosis in a TB reference hospital (PR 3.6, 95%CI 1.5-8.7), male sex (PR 2.3,95%CI 1.2-4.4) and dyspnoea (PR 0.3, 95%CI 0.1-0.7). CONCLUSION: We found high levels of DR- and MDR-TB. Our study design did not permit us to determine the contribution of community versus nosocomial transmission. Further studies are needed to establish this. Nevertheless, hospitals should be recognised as a potential source of transmission of resistant TB strains and urgent measures to avoid nosocomial TB transmission should be taken.
Resumo:
Cell resistance to glucocorticoids is a major problem in the treatment of nasal polyposis (NP). The objectives of this study were to observe the effect of budesonide on the expression of IL-1 beta, TNF-alpha, granulocyte macrophage-colony stimulating factor, intercellular adhesion molecule (ICAM)-1, basic fibroblast growth factor, eotaxin-2, glucocorticoid receptor (GR)-alpha, GR-beta, c-Fos and p65 in nasal polyps and to correlate their expression to clinical response. Biopsies from nasal polyps were obtained from 20 patients before and after treatment with topical budesonide. Clinical response to treatment was monitored by a questionnaire and nasal endoscopy. The mRNA levels of the studied genes were measured by real-time quantitative (RQ)-PCR. There was a significant decrease in the expression of TNF-alpha (P < 0.05), eotaxin-2 (P < 0.05) and p65 (P < 0.05) in NP after treatment. Poor responders to glucocorticoids showed higher expression of IL-1 beta (3.74 vs. 0.14; P < 0.005), ICAM-1 (1.91 vs. 0.29; P < 0.05) and p65 (0.70 vs. 0.16; P < 0.05) before treatment. Following treatment, IL-1 beta (4.18 vs. 0.42; P < 0.005) and GR-beta (0.95 vs. 0.28; P < 0.05) mRNA expression was higher in this group. Topical budesonide reduced the expression of TNF-alpha, eotaxin-2 and p65. Poor responders to topical budesonide exhibit higher levels of IL-1 beta, ICAM-1 and nuclear factor (NF)-kappa B at diagnosis and higher expression of both IL-1 beta and GR-beta after treatment. These results emphasize the anti-inflammatory action of topical budesonide at the molecular level and its importance in the treatment of NP. Nevertheless, IL-1 beta, ICAM-1 and NF-kappa B may be associated with primary resistance to glucocorticoids in NP, whereas higher expression of GR-beta in poor responders only after glucocorticoid treatment may represent a secondary drug resistance mechanism in this disease.
Resumo:
The protozoan parasite Leishmania causes serious infections in humans all over the world. After being inoculated into the skin through the bite of an infected sandfly, Leishmania promastigotes must gain entry into macrophages to initiate a successful infection. Specific, surface exposed phospholipids have been implicated in Leishmania-macrophage interaction but the mechanisms controlling and regulating the plasma membrane lipid distribution remains to be elucidated. Here, we provide evidence for Ca(2+)-induced phospholipid scrambling in the plasma membrane of Leishmania donovani. Stimulation of parasites with ionomycin increases intracellular Ca(2+) levels and triggers exposure of phosphatidylethanolamine at the cell surface. We found that increasing intracellular Ca(2+) levels with ionomycin or thapsigargin induces rapid transbilayer movement of NBD-labelled phospholipids in the parasite plasma membrane that is bidirectional, independent of cellular ATP and not specific to the polar lipid head group. The findings suggest the presence of a Ca(2+)-dependent lipid scramblase activity in Leishmania parasites. Our studies further show that lipid scrambling is not activated by rapid exposure of promastigotes to higher physiological temperature that increases intracellular Ca(2+) levels. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Laryngeal squamous cell carcinoma is very common in head and neck cancer, with high mortality rates and poor prognosis. In this study, we compared expression profiles of clinical samples from 13 larynx tumors and 10 non-neoplastic larynx tissues using a custom-built cDNA microarray containing 331 probes for 284 genes previously identified by informatics analysis of EST databases as markers of head and neck tumors. Thirty-five genes showed statistically significant differences (SNR >= 11.01, p <= 0.001) in the expression between tumor and non-tumor larynx tissue samples. Functional annotation indicated that these genes are involved in cellular processes relevant to the cancer phenotype, such as apoptosis, cell cycle, DNA repair, proteolysis, protease inhibition, signal transduction and transcriptional regulation. Six of the identified transcripts map to intronic regions of protein-coding genes and may comprise non-annotated exons or as yet uncharacterized long ncRNAs with a regulatory role in the gene expression program of larynx tissue. The differential expression of 10 of these genes (ADCY6, AES, AL2SCR3, CRR9, CSTB, DUSP1, MAP3K5, PLAT, UBL1 and ZNF706) was independently confirmed by quantitative real-time RT-PCR. Among these, the CSTB gene product has cysteine protease inhibitor activity that has been associated with an antimetastatic function. Interestingly, CSTB showed a low expression in the tumor samples analyzed (p<0.0001). The set of genes identified here contribute to a better understanding of the molecular basis of larynx cancer, and provide candidate markers for improving diagnosis, prognosis and treatment of this carcinoma.