4 resultados para CCR2

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Periapical lesions are chronic inflammatory disorders of periradicular tissues caused by etiologic agents of endodontic origin. The inflammatory chemokines are thought to be involved in the latter observed osteolysis. With a murine model of experimental periapical lesion, the objective of this study was to evaluate the role of the chemokine receptor CCR2 in the lesion progression, osteoclast differentiation and activation, and expression of inflammatory osteolysis-related mediators. Methods: For lesion induction, right mandibular first molars were opened surgically with a (1)/(4) carbine bur, and 4 bacterial strains were inoculated in the exposed dental pulp; left mandibular first molars were used as controls. Animals were killed at 3, 7, 14, and 21 days after surgeries to evaluate the kinetics of lesion development. Results: CCR2 KO mice showed wider lesions than WT mice. CCR2 KO mice also expressed higher levels of the osteoclastogenic and osteolytic factors, receptor activator of nuclear factor kappa B ligand (RANKL) and cathepsin K, of the proinflammatory cytokine tumor necrosis factor alpha, and of the neutrophil migration related chemokine, KC. Conclusions: These results suggest that CCR2 is important in host protection to periapical osteolysis. (J Endod 2010;36:244-250)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because the potential of yerba mate (Ilex paraguariensis) has been suggested in the management of obesity, the aim of the present study was to evaluate the effects of yerba mate extract on weight loss, obesity-related biochemical parameters, and the regulation of adipose tissue gene expression in high-fat diet-induced obesity in mice. Thirty animals were randomly assigned to three groups. The mice were introduced to standard or high-fat diets. After 12 weeks on a high-fat diet, mice were randomly assigned according to the treatment (water or yerba mate extract 1.0 g/-kg). After treatment intervention, plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and glucose were evaluated. Adipose tissue was examined to determine the mRNA levels of several genes such as tumor necrosis factor-alpha (TNF-alpha), leptin, interleukin-6 (IL-6), C-C motif chemokine ligand-2 (CCL2), CCL receptor-2 (CCR2), angiotensinogen, plasminogen activator inhibitor-1 (PAI-1), adiponectin, resistin, peroxisome proliferator-activated receptor-gamma(2) (PPAR-gamma(2)), uncoupling protein-1 (UCP1), and PPAR-gamma coactivator-1 alpha (PGC-1 alpha). The F4/80 levels were determined by immunoblotting. We found that obese mice treated with yerba mate exhibited marked attenuation of weight gain, adiposity, a decrease in epididymal fat-pad weight, and restoration of the serum levels of cholesterol, triglycerides, LDL cholesterol, and glucose. The gene and protein expression levels were directly regulated by the high-fat diet. After treatment with yerba mate extract, we observed a recovery of the expression levels. In conclusion, our data show that yerba mate extract has potent antiobesity activity in vivo. Additionally, we observed that the treatment had a modulatory effect on the expression of several genes related to obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodontal disease (PD) progression involves the selective leukocyte infiltration into periodontium, supposedly mediated by the chemokine/chemokine receptor system. In this study, we investigated the role of chemokine receptor CCR5 in the immunoregulation of experimental PD in C57BL/6 (WT) and CCR5KO mice. Aggregatibacter actinomycetem comitans infection triggered the chemoattraction of distinct CCR5+ leukocyte subpopulations (determined by flow cytometry): CCR5+F4/80+ leukocytes, which co-express CD14, CCR2, TNF-alpha, and IL-1 beta, indicative of activated macrophages; and CCR5+CD4+ cells, which co-express CXCR3, IFN-gamma, and RANKL, indicative of Th1 lymphocytes, therefore comprising pro-osteoclastic and osteoclastogenic cell subsets, respectively. CCR5KO mice presented a lower PD severity (lower inflammation and alveolar bone loss) when compared with the WT strain, since the migration of F4/80+, TNF-alpha+, CD4+, and RANKL+ cells specifically decreased due to the lack of CCR5. Also, ELISA analysis demonstrated that the production of TNF-alpha, IL-1 beta, IL-6, IFN-gamma, and RANKL in periodontal tissues was significantly decreased in the CCR5KO strain. The periodontal bacterial load and antimicrobial patterns were unaltered in CCR5KO mice. Our results demonstrate that the chemokine receptor is involved in the migration of distinct leukocyte subpopulations throughout experimental PD, being a potential target for therapeutic intervention in PD.