3 resultados para C-shaped microstrip antenna
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
GPR (Ground Penetrating Radar) results are shown for perpendicular broadside and parallel broadside antenna orientations. Performance in detection and localization of concrete tubes and steel tanks is compared as a function of acquisition configuration. The comparison is done using 100 MHz and 200 MHz center frequency antennas. All tubes and tanks are buried at the geophysical test site of IAG/USP in Sao Paulo city, Brazil. The results show that the long steel pipe with a 38-mm diameter was well detected with the perpendicular broadside configuration. The concrete tubes were better detected with the parallel broadside configuration, clearly showing hyperbolic diffraction events from all targets up to 2-m depth. Steel tanks were detected with the two configurations. However, the parallel broadside configuration was generated to a much lesser extent an apparent hyperbolic reflection corresponding to constructive interference of diffraction hyperbolas of adjacent targets placed at the same depth. Vertical concrete tubes and steel tanks were better contained with parallel broadside antennas, where the apexes of the diffraction hyperbolas better corresponded to the horizontal location of the buried target disposition. The two configurations provide details about buried targets emphasizing how GPR multi-component configurations have the potential to improve the subsurface image quality as well as to discriminate different buried targets. It is judged that they hold some applicability in geotechnical and geoscientific studies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the thermopower, thermal conductance, electric conductance and the thermoelectric figure of merit for a gate-defined T-shaped single quantum dot (QD). The QD is solved in the limit of strong Coulombian repulsion U -> infinity, inside the dot, and the quantum wire is modeled on a tight-binding linear chain. We employ the X-boson approach for the Anderson impurity model to describe the localized level within the quantum dot. Our results are in qualitative agreement with recent experimental reports and other theoretical researches for the case of a quantum dot embedded into a conduction channel, employing analogies between the two systems. The results for the thermopower sign as a function of the gate voltage (associated with the quantum dot energy) are in agreement with a recent experimental result obtained for a suspended quantum dot. The thermoelectric figure of merit times temperature results indicates that, at low temperatures and in the crossover between the intermediate valence and Kondo regimes, the system might have practical applicability in the development of thermoelectric devices. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.