2 resultados para Building information modelling (BIM)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.
Resumo:
Species` potential distribution modelling consists of building a representation of the fundamental ecological requirements of a species from biotic and abiotic conditions where the species is known to occur. Such models can be valuable tools to understand the biogeography of species and to support the prediction of its presence/absence considering a particular environment scenario. This paper investigates the use of different supervised machine learning techniques to model the potential distribution of 35 plant species from Latin America. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species. The experimental results highlight the good performance of random trees classifiers, indicating this particular technique as a promising candidate for modelling species` potential distribution. (C) 2010 Elsevier Ltd. All rights reserved.