2 resultados para Buckner family (John Buckner, d. ca. 1695)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is a reply to Ortega-Baes` et al. (2010) survey of 25 Argentinean species of cacti evaluated for vivipary. We argue that the sample size and geographic area of the species investigated is insufficient to totally exclude the putative commonness of this condition in the Cactaceae. We indicate possible reasons why they did not find viviparous fruits in their survey. Failure to detect vivipary in cacti of NW Argentina may be correlated with limited taxonomic sampling and geographic region in addition to intrinsic and extrinsic plant factors, including different stages of fruit and seed development and genetic, ecological, and edaphic aspects, which, individually or in concert, control precocious germination. We uphold that viviparity is putatively frequent in this family and list 16 new cases for a total of 53 viviparous cacti, which make up ca. 4% incidence of viviparism in the Cactaceae, a substantially higher percentage than most angiosperm families exhibiting this condition. The Cactaceae ranks fourth in frequency of viviparity after the aquatic families of mangroves and seagrasses. We suggest the re-evaluation of cactus vivipary, primarily as a reproductive adaptation to changing environments and physiological stress with a secondary role as a reproductive strategy with limited offspring dispersal/survival and fitness advantages. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) similar to 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.