4 resultados para Bromatologic composition degradation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The objective of the present work was to evaluate the effects of 14 years of weathering exposition on the microstructure and mineral composition of cementitious roofing tiles, still in service, reinforced with fique fibres (Furcrae gender). The results show that tiles under weathering exposition presented higher water absorption and apparent void volume than tiles under laboratory exposition. The continuous hydration of cement and natural carbonation filled the smaller pores but contrarily the large pores remained in the porous fibre to matrix interface in the samples exposed to weathering. On the other hand, their microstructure presented lower air permeability than samples aged in the internal environment of the laboratory. Besides, in the weathering aged tiles takes place a more intensive hydration process as it was identified greater amount of hydrated phases than in the laboratory aged specimens. The present results contribute to understanding the consequences of tropical weathering on the fibre-cement degradation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present paper presents the study of the decolourisation of real textile effluent by constant current electrolysis in a flow-cell using a DSAO type material. The effect of using different anode materials (Ti/Ru0.3Ti0.7O2; Ti/Ir0.3Ti0.7O2; Ti/RuxSn1-xO2, where X = 0.1, 0.2 or 0.3) on the efficiency of colour removal is discussed. Attempts to perform galvanostatic oxidation (40 and 60 mA cm(-2)) on the as-received effluent demonstrate that colour removal and total organic carbon (TOC) removal are limited. In this case the greatest degree of colour removal is achieved when anode containing 90% SnO2 is used. If the conductivity of the effluent is increased by adding NaCl (0.1 mol L-1) appreciable colour/TOC removal is observed. The efficiencies of colour and TOC removal are discussed in terms of the energy per order (E-EO/kWhm(-3) order(-1)) and energy consumption (E-C/kW h kg(-1) TOC), respectively. Finally, the extent of colour removal is compared to consent levels presented in the literature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study presents the results of the degradation of the pesticide atrazine using electrochemical and photo-assisted electrochemical degradation techniques using SnO(2)-containing electrode of nominal composition electrodes of composition Ti/Ru(x)Sni-(x)O(2) (where X = 0.10, 0.15, 0.20, 0.25 and 0.30). The materials were characterized ex situ and in situ in order to correlate the observed atrazine removal rates with electrode morphology/composition. The results obtained demonstrate the effectiveness of the photo-assisted electrochemical degradation. Using purely electrochemical methods the rate of atrazine removal is almost zero at all the electrodes studied. However, the application of photo-assisted degradation results in almost complete atrazine removal in 1 h of electrolysis. The efficiency of atrazine degradation does not seem to be greatly affected by the electrode material or by SnO(2) content, but the overall COD removal is dependent on the SnO(2) content. Overall, the SnO(2)-containing electrodes do not reach the level of COD removal (maximum similar to 21%) seen for the Ti/Ru(0.3)Ti(0.2)O(2) electrode. An interesting correlation between the morphology factor (phi) and chemical oxygen demand removal is observed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a degradation study of the pesticide atrazine using photo-assisted electrochemical methods at a dimensionally stable anode (DSA (R)) of nominal composition Ti/Ru(0.3)Ti(0.7)O(2) in a prototype reactor. The effects of current density, electrolyte flow-rate, as well as the use of different atrazine concentrations are reported. The results indicate that the energy consumption is substantially reduced for the combined photochemical and electrochemical processes when compared to the isolated systems. It is observed that complete atrazine removal is achieved at low current densities when using the combined method, thus reducing the energy required to operate the electrochemical system. The results also include the investigation of the phytotoxicity of the treated solutions.