69 resultados para Broadband planar monopole Antennas
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A new excitation model for the numerical solution of field integral equation (EFIE) applied to arbitrarily shaped monopole antennas fed by coaxial lines is presented. This model yields a stable solution for the input impedance of such antennas with very low numerical complexity and without the convergence and high parasitic capacitance problems associated with the usual delta gap excitation.
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Gaussianity and statistical isotropy of the Universe are modern cosmology's minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum C(l), this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual C(l)'s. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAP's 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l = 7 and l = 8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.
Resumo:
We present an analysis of the absorption of acoustic waves by a black hole analogue in (2 + 1) dimensions generated by a fluid flow in a draining bathtub. We show that the low-frequency absorption length is equal to the acoustic hole circumference and that the high-frequency absorption length is 4 times the ergoregion radius. For intermediate values of the wave frequency, we compute the absorption length numerically and show that our results are in excellent agreement with the low-and high-frequency limits. We analyze the occurrence of superradiance, manifested as negative partial absorption lengths for corotating modes at low frequencies.
Resumo:
We investigate a conjecture on the cover times of planar graphs by means of large Monte Carlo simulations. The conjecture states that the cover time tau (G(N)) of a planar graph G(N) of N vertices and maximal degree d is lower bounded by tau (G(N)) >= C(d)N(lnN)(2) with C(d) = (d/4 pi) tan(pi/d), with equality holding for some geometries. We tested this conjecture on the regular honeycomb (d = 3), regular square (d = 4), regular elongated triangular (d = 5), and regular triangular (d = 6) lattices, as well as on the nonregular Union Jack lattice (d(min) = 4, d(max) = 8). Indeed, the Monte Carlo data suggest that the rigorous lower bound may hold as an equality for most of these lattices, with an interesting issue in the case of the Union Jack lattice. The data for the honeycomb lattice, however, violate the bound with the conjectured constant. The empirical probability distribution function of the cover time for the square lattice is also briefly presented, since very little is known about cover time probability distribution functions in general.
Resumo:
A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1/2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.
Resumo:
Optical monitoring systems are necessary to manufacture multilayer thin-film optical filters with low tolerance on spectrum specification. Furthermore, to have better accuracy on the measurement of film thickness, direct monitoring is a must. Direct monitoring implies acquiring spectrum data from the optical component undergoing the film deposition itself, in real time. In making film depositions on surfaces of optical components, the high vacuum evaporator chamber is the most popular equipment. Inside the evaporator, at the top of the chamber, there is a metallic support with several holes where the optical components are assembled. This metallic support has rotary motion to promote film homogenization. To acquire a measurement of the spectrum of the film in deposition, it is necessary to pass a light beam through a glass witness undergoing the film deposition process, and collect a sample of the light beam using a spectrometer. As both the light beam and the light collector are stationary, a synchronization system is required to identify the moment at which the optical component passes through the light beam.
Resumo:
A computational method based on the impulse response and on the discrete representation computational concept is proposed for the determination of the echo responses from arbitrary-geometry targets. It is supposed that each point of the transducer aperture can be considered as a source radiating hemispherical waves to the reflector. The local interaction with each of the hemispherical waves at the reflector surface can be modeled as a plane wave impinging on a planar surface, using the respective reflection coefficient. The method is valid for all field regions and can be performed for any excitation waveform radiated from an arbitrary acoustic aperture. The effects of target geometry, position, and material on both the amplitude and the shape of the echo response are studied. The model is compared with experimental results obtained using broadband transducers together with plane and cylindrical concave rectangular reflectors (aluminum, brass, and acrylic), as well as a circular cavity placed on a plane surface, in a water medium. The method can predict the measured echoes accurately. This paper shows an improved approach of the method, considering the reflection coefficient for all incident hemispherical waves arriving at each point of the target surface.
Resumo:
This letter addresses the optimization and complexity reduction of switch-reconfigured antennas. A new optimization technique based on graph models is investigated. This technique is used to minimize the redundancy in a reconfigurable antenna structure and reduce its complexity. A graph modeling rule for switch-reconfigured antennas is proposed, and examples are presented.
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.
Resumo:
Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ultrasonometry seems to have a future for the evaluation of fracture healing. Ultrasound propagation velocity (USPV) significantly decreases at the same time that bone diameter decreases as healing takes place, thus approaching normal values. In this investigation, both USPV and broadband ultrasound attenuation (BUA) were measured using a model of a transverse mid-diaphyseal osteotomy of sheep tibiae. Twenty-one sheep were operated and divided into three groups of seven, according to the follow-up period of 30, 60, and 90 days, respectively. The progress of healing of the osteotomy was checked with monthly conventional radiographs. The animals were killed at the end of the period of observation of each group, both operated-upon and intact tibiae being resected and submitted to the measurement of underwater transverse and direct contact transverse and longitudinal USPV and BUA at the osteotomy site. The intact left tibia of the 21 animals was used for control, being examined on a symmetrical diaphyseal segment. USPV increased while BUA decreased with the progression of healing, with significant differences between the operated and untouched tibiae and between the periods of observation, for most of the comparisons. There was a strong negative correlation between USPV and BUA. Both USPV and BUA directly reflect and can help predict the healing of fractures, but USPV alone can be used as a fundamental parameter. Ultrasonometry may be of use in clinical application to humans provided adequate adaptations can be developed. (C) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:444-451, 2011
Resumo:
We developed a general method for determination of water production rates from groundbased visual observations and applied it to Comet Hale-Bopp. Our main objective is to extend the method to include total visual magnitude observations obtained with CCD detector and V filter in the analysis of total visual magnitudes. We compare the CCD V-broadband careful observations of Liller [Liller, W. Pre-perihelion CCD photometry of Comet 1995 01 (Hale-Bopp). Planet. Space Sci. 45, 1505-1513, 1997; Liller, W. CCD photometry of Comet C/1995 O1 (Hale-Bopp): 1995-2000. Int. Comet Quart. 23(3), 93-97, 2001] with the total visual magnitude observations from experienced international observers found in the International Comet Quarterly (ICQ) archive. A data set of similar to 400 CCD observations covering about the same 6 years time span of the similar to 12,000 ICQ selected total visual magnitude observations were used in the analysis. A least-square method applied to the water production rates, yields power laws as a function of the heliocentric distances for the pre- and post-perihelion phases. The average dimension of the nucleus as well as its effective active area is determined and compared with values published in the literature. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the Structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane composition on proton transport have been addressed in this study by means of electrical measurements in planar lipid bilayers. Proton conductance (G(H)(+)) was calculated from open-circuit voltage and short-circuit current density measurements. We found that cis-unsaturated FFA caused a more pronounced effect on proton transport as compared to Saturated and trans-unsaturated FFA. Cholesterol and cardiolipin decreased membrane leak conductance. Cardiolipin also decreased proton conductance. These effects indicate a dual modulation of protein-independent proton transport by FFA: through a flip-flop mechanism and by modifying a proton diffusional pathway. Moreover the membrane phospholipid composition was shown to importantly affect both processes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.