10 resultados para Bottom quark

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relativistic heavy ion program developed at RHIC and now at LHC motivated a deeper study of the properties of the quark-gluon plasma (QGP) and, in particular, the study of perturbations in this kind of plasma. We are interested on the time evolution of perturbations in the baryon and energy densities. If a localized pulse in baryon density could propagate throughout the QGP for long distances preserving its shape and without loosing localization, this could have interesting consequences for relativistic heavy ion physics and for astrophysics. A mathematical way to prove that this can happen is to derive (under certain conditions) from the hydrodynamical equations of the QGP a Korteveg-de Vries (KdV) equation. The solution of this equation describes the propagation of a KdV soliton. The derivation of the KdV equation depends crucially on the equation of state (EOS) of the QGP. The use of the simple MIT bag model EOS does not lead to KdV solitons. Recently we have developed an EOS for the QGP which includes both perturbative and nonperturbative corrections to the MIT one and is still simple enough to allow for analytical manipulations. With this EOS we were able to derive a KdV equation for the cold QGP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|< 0.35 in p+p collisions at s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2 < p(T)< 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D -> e(+/-)K(-/+)X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p(T). A fixed-order-plus-next-to-leading-log perturbative quantum chromodynamics calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is sigma(bb)=3.2(-1.1)(+1.2)(stat)(-1.3)(+1.4)(syst)mu b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the propagation of perturbations in the quark gluon plasma. This subject has been addressed in other works and in most of the theoretical descriptions of this phenomenon the hydrodynamic equations have been linearized for simplicity. We propose an alternative approach, also based on hydrodynamics but taking into account the nonlinear terms of the equations. We show that these terms may lead to localized waves or even solitons. We use a simple equation of state for the QGP and expand the hydrodynamic equations around equilibrium configurations. The resulting differential equations describe the propagation of perturbations in the energy density. We solve them numerically and find that localized perturbations can propagate for long distances in the plasma. Under certain conditions our solutions mimic the propagation of Korteweg-de Vries solitons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primordial Quark Nuggets, remnants of the quark-hadron phase transition, may be hiding most of the baryon number in superdense chunks have been discussed for years always from the theoretical point of view. While they seemed originally fragile at intermediate cosmological temperatures, it became increasingly clear that they may survive due to a variety of effects affecting their evaporation (surface and volume) rates. A search of these objects have never been attempted to elucidate their existence. We discuss in this note how to search directly for cosmological fossil nuggets among the small asteroids approaching Earth. `Asteroids` with a high visible-to-infrared flux ratio, constant lightcurves and devoid of spectral features are signals of an actual possible nugget nature. A viable search of very definite primordial quark nugget features can be conducted as a spinoff of the ongoing/forthcoming NEAs observation programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the propagation of perturbations in the energy density in a quark gluon plasma. Expanding the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations we obtain a nonlinear differential equation called the breaking wave equation. We solve it numerically and follow the time-evolution of initially localized pulses. We find that, quite unexpectedly, these pulses live for a very long time (compared to the reaction time-scales) before breaking. In practice, they mimick the Korteweg-de Vries solitons. Their existence may have some observable consequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extract directly (for the first time) the charmed (C = 1) and bottom (B = -1) heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exact value and definition of the heavy quark mass, to the perturbative radiative corrections and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon masses. Noticing that most of the mass-splittings are mainly controlled by the ratio kappa <(S) over bars >/<(d) over bard > of the condensate, we extract this ratio, by allowing 1 sigma deviation from the observed masses of the Xi(c.b) and of the Omega(c). We obtain: kappa = 0.74(3), which improves the existing estimates: kappa = 0.70(10) from light hadrons. Using this value, we deduce M(Omega b) = 6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4 sigma with the one from D0. Predictions of the Xi(Q)` and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 2. Predictions of the hyperfine splittings Omega(Q)* - Omega(Q) and Xi(Q)* - Xi(Q) are also given in Table 3. Starting for a general choice of the interpolating currents for the spin 1/2 baryons, our analysis favours the optimal value of the mixing angle b similar or equal to (-1/5-0) found from light and non-strange heavy baryons. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We summarize the first results for masses and decay constants of bottom-strange (pseudo-scalar and vector) mesons from nonperturbatively renormalized heavy-quark effective theory (HQET), using lattice-QCD simulations in the quenched approximation.