4 resultados para Black-Scholes Equation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.
Resumo:
Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper we study fermion perturbations in four-dimensional black holes of string theory, obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The Dirac equation for the massless neutrino field, after conformal re-scaling of the metric, is written as a wave equation suitable to study the time evolution of the perturbation. We perform a numerical integration of the evolution equation, and with the aid of Prony fitting of the time-domain profile, we calculate the complex frequencies that dominate the quasinormal ringing stage, and also determine these quantities by the semi-analytical sixth-order WKB method. We also find numerically the decay factor of fermion fields at very late times, and show that the falloff is identical to those showing for massless fields in other four-dimensional black hole spacetimes.
Resumo:
The accretion of a phantom fluid with non-zero chemical potential by black holes is discussed with basis on the generalized second law of thermodynamics. For phantom fluids with positive temperature and negative chemical potential we demonstrate that the accretion process is possible, and that the condition guaranteeing the positiveness of the phantom fluid entropy coincides with the one required by the generalized second law. (C) 2010 Elsevier B.V. All rights reserved.