3 resultados para Bivariate analysis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To assess the role of the individual determinants on the inequalities of dental services utilization among low-income children living in the working area of Brazilian`s federal Primary Health Care program, which is called Family Health Program (FHP), in a big city in Southern Brazil. Methods: A cross-sectional population-based study was performed. The sample included 350 children, ages 0 to 14 years, whose parents answered a questionnaire about their socioeconomic conditions, perceived needs, oral hygiene habits, and access to dental services. The data analysis was performed according to a conceptual framework based on Andersen`s behavioral model of health services use. Multivariate models of logistic regression analysis instructed the hypothesis on covariates for never having had a dental visit. Results: Thirty one percent of the surveyed children had never had a dental visit. In the bivariate analysis, higher proportion of children who had never had a dental visit was found among the very young, those with inadequate oral hygiene habits, those without perceived need of dental care, and those whose family homes were under absent ownership. The mechanisms of social support showed to be important enabling factors: children attending schools/kindergartens and being regularly monitored by the FHP teams had higher odds of having gone to the dentist, even after adjusting for socioeconomic, demographic, and need variables. Conclusions: The conceptual framework has confirmed the presence of social and psychosocial inequalities on the utilization pattern of dental services for low-income children. The individual determinants seem to be important predictors of access.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different ""frailties"" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.