8 resultados para Biomes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Chromosomes of the South American geckos Gymnodactylus amarali and G. geckoides from open and dry areas of the Cerrado and Caatinga biomes in Brazil, respectively, were studied for the first time, after conventional and AgNOR staining, CBG- and RBG-banding, and FISH with telomeric sequences. Comparative analyses between the karyotypes of open areas and the previously studied Atlantic forest species G. darwinii were also performed. The chromosomal polymorphisms detected in populations of G. amarali from the states of Goias and Tocantins is the result of centric fusions (2n = 38, 39 and 40), suggesting a differentiation from a 2n = 40 ancestral karyotype and the presence of supernumerary chromosomes. The CBG- and RBG-banding patterns of the Bs are described. G. geckoides has 40 chromosomes with gradually decreasing sizes, but it is distinct from the 2n = 40 karyotypes of G. amarali and G. darwinii due to occurrence of pericentric inversions or centromere repositioning. NOR location seems to be a marker for Gymnodactylus, as G. amarali and G. geckoides share a medium-sized subtelocentric NOR-bearing pair, while G. darwinii has NORs at the secondary constriction of the long arm of pair 1. The comparative analyses indicate a non-random nature of the Robertsonian rearrangements in the genus Gymnodactylus. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
The Atlantic Forest deserves special attention due to its high level of species endemism and degree of threat. As in other tropical biomes, there is little information about the ecology of the organisms that occur there. The objectives of this study were to verify how fruit-feeding butterflies are distributed through time, and the relation with meteorological conditions. Species richness and Shannon index were partitioned additively at the monthly level, and beta diversity, used as a hierarchical measure of temporal species turnover, was calculated among months, trimesters, and semesters. Circular analysis was used to verify how butterflies are distributed along seasons and its relation with meteorological conditions. We sampled 6488 individuals of 73 species. Temporal diversity of butterflies was more grouped than expected by chance among the months of each trimester. Circular analyses revealed that diversity is concentrated in hot months (September-March), with the subfamily Brassolinae strongly concentrated in February-March. Average temperature was correlated with total abundance of butterflies, abundance of Biblidinae, Brassolinae and Morphinae, and richness of Satyrinae. The present results show that 3mo of sampling between September and March is enough to produce a nonbiased sample of the local assemblage of butterflies, containing at least 70 percent of the richness and 25 percent of abundance. The influence of temperature on sampling is probably related to butterfly physiology. Moreover, temperature affects resource availability for larvae and adults, which is higher in hot months. The difference in seasonality patterns among subfamilies is probably a consequence of different evolutionary pressures through time.
Resumo:
Analysis of floristic similarity relationships between plant communities can detect patterns of species occurrence and also explain conditioning factors. Searching for such patterns, floristic similarity relationships among Atlantic Forest sites situated at Ibiuna Plateau, Sao Paulo state, Brazil, were analyzed by multivariate techniques. Twenty one forest fragments and six sites within a continuous Forest Reserve were included in the analyses. Floristic composition and structure of the tree community (minimum dbh 5 cm) were assessed using the point centered quarter method. Two methods were used for multivariate analysis: Detrended Correspondence Analysis (DCA) and Two-Way Indicator Species Analysis (TWINSPAN). Similarity relationships among the study areas were based on the successional stage of the community and also on spatial proximity. The more similar the successional stage of the communities, the higher the floristic similarity between them, especially if the communities are geographically close. A floristic gradient from north to south was observed, suggesting a transition between biomes, since northern indicator species are mostly heliophytes, occurring also in cerrado vegetation and seasonal semideciduous forest, while southern indicator species are mostly typical ombrophilous and climax species from typical dense evergreen Atlantic Forest.
Resumo:
Aim We present a molecular phylogenetic analysis of Brotogeris (Psittacidae) using several distinct and complementary approaches: we test the monophyly of the genus, delineate the basal taxa within it, uncover their phylogenetic relationships, and finally, based on these results, we perform temporal and spatial comparative analyses to help elucidate the historical biogeography of the Neotropical region. Location Neotropical lowlands, including dry and humid forests. Methods Phylogenetic relationships within Brotogeris were investigated using the complete sequences of the mitochondrial genes cyt b and ND2, and partial sequences of the nuclear intron 7 of the gene for Beta Fibrinogen for all eight species and 12 of the 17 taxa recognized within the genus (total of 63 individuals). In order to delinetae the basal taxa within the genus we used both molecular and plumage variation, the latter being based on the examination of 597 skin specimens. Dates of divergence and confidence intervals were estimated using penalized likelihood. Spatial and temporal comparative analyses were performed including several closely related parrot genera. Results Brotogeris was found to be a monophyletic genus, sister to Myiopsitta. The phylogenetic analyses recovered eight well-supported clades representing the recognized biological species. Although some described subspecies are diagnosably distinct based on morphology, there was generally little intraspecific mtDNA variation. The Amazonian species had different phylogenetic affinities and did not group in a monophyletic clade. Brotogeris diversification took place during the last 6 Myr, the same time-frame as previously found for Pionus and Pyrilia. Main conclusions The biogeographical history of Brotogeris implies a dynamic history for South American biomes since the Pliocene. It corroborates the idea that the geological evolution of Amazonia has been important in shaping its biodiversity, argues against the idea that the region has been environmentally stable during the Quaternary, and suggests dynamic interactions between wet and dry forest habitats in South America, with representatives of the Amazonian biota having several independent close relationships with taxa endemic to other biomes.
Resumo:
We see today many efforts to quantify biodiversity in different biomes. It is very important then to develop and to apply other methodologies that allow us to assess biodiversity. Here we present an example of application of three tools with this goal. We analyzed two populations of Plebeia remota from two distinct biomes that already showed several differences in morphology and behavior. Based on these differences, it has been suggested that the populations of Cunha and Prudentopolis do not represent a single species. In order to verify the existence or absence of gene flow between these two groups, we characterized the patterns of mtDNA through RFLP, the patterns of wing venation through geometric morphometry, and the cuticular hydrocarbons through gas chromatography-mass spectrometry. We used bees collected in these two locations and also from colonies which have being kept for around 9 years at Sao Paulo University. We found six different haplotypes in these specimens, of which three of them occurred exclusively in the population of Cunha and three only in the Prudentopolis population. The fact that the populations do not share haplotypes suggests no maternal gene flow between them. The two populations were differentiated by the pattern of the wing veins. They also had different mixtures of cuticle hydrocarbons. Furthermore it was shown that the colonies kept at the university did not hybridize. These two groups may constitute different species. We also show here the importance of using other methodologies than traditional taxonomy to assess and understand biodiversity, especially in bees.
Resumo:
The open vegetation corridor of South America is a region dominated by savanna biomes. It contains forests (i.e. riverine forests) that may act as corridors for rainforest specialists between the open vegetation corridor and its neighbouring biomes (i.e. the Amazonian and Atlantic forests). A prediction for this scenario is that populations of rainforest specialists in the open vegetation corridor and in the forested biomes show no significant genetic divergence. We addressed this hypothesis by studying plumage and genetic variation of the Planalto woodcreeper Dendrocolaptes platyrostris Spix (1824) (Aves: Furnariidae), a forest specialist that occurs in both open habitat and in the Atlantic forest. The study questions were: (1) is there any evidence of genetic continuity between populations of the open habitat and the Atlantic forest and (2) is plumage variation congruent with patterns of neutral genetic structure or with ecological factors related to habitat type? We used cytochrome b and mitochondrial DNA control region sequences to show that D. platyrostris is monophyletic and presents substantial intraspecific differentiation. We found two areas of plumage stability: one associated with Cerrado and the other associated with southern Atlantic Forest. Multiple Mantel tests showed that most of the plumage variation followed the transition of habitats but not phylogeographical gaps, suggesting that selection may be related to the evolution of the plumage of the species. The results were not compatible with the idea that forest specialists in the open vegetation corridor and in the Atlantic forest are linked at the population level because birds from each region were not part of the same genetic unit. Divergence in the presence of gene flow across the ecotone between both regions might explain our results. Also, our findings indicate that the southern Atlantic forest may have been significantly affected by Pleistocene climatic alteration, although such events did not cause local extinction of most taxa, as occurred in other regions of the globe where forests were significantly affected by global glaciations. Finally, our results neither support plumage stability areas, nor subspecies as full species. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103, 801-820.
Resumo:
The genetic diversity and phylogeographical patterns of Trypanosoma species that infect Brazilian bats were evaluated by examining 1043 bats from 63 species of seven families captured in Amazonia, the Pantanal, Cerrado and the Atlantic Forest biomes of Brazil. The prevalence of trypanosonne-infected bats, as estimated by haemoculture, was 12.9%, resulting in 77 Cultures of isolates, most morphologically identified as Trypanosoma cf. cruzi, classified by barcoding using partial sequences from ssrRNA gene into the subgenus Schizotrypanum and identified as T. cruzi (15), T cruzi marinkellei (37) or T. cf. dionisii (25). Phylogenetic analyses using nuclear ssrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and mitochondrial cytochrome b (Cyt b) gene sequences generated three clades, which clustered together forming the subgenus Schizotrypanum. In addition to vector association, bat trypanosomes were related by the evolutionary history, ecology and phylogeography of the bats. Tryponosoma cf. dionisii trypanosomes (32.4%) infected 12 species from four bat families captured in all biomes, from North to South Brazil, and clustered with T. dionisii from Europe despite being separated by some genetic distance. Trypanosoma cruzi marinkellei (49.3%) was restricted to phyllostomid bats from Amazonia to the Pantanal (North to Central). Trypanosoma cruzi (18.2%) was found mainly in vespertilionid and phyllostomid bats from the Pantanal/Cerrado and the Atlantic Forest (Central to Southeast), with a few isolates from Amazonia. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Analysis of the phylogenetic relationships among trypanosomes from vertebrates and invertebrates disclosed a new lineage of trypanosomes circulating among anurans and sand flies that share the same ecotopes in Brazilian Amazonia. This assemblage of closely related trypanosomes was determined by comparing whole SSU rDNA sequences of anuran trypanosomes from the Brazilian biomes of Amazonia, the Pantanal, and the Atlantic Forest and from Europe, North America, and Africa, and from trypanosomes of sand flies from Amazonia. Phylogenetic trees based on maximum likelihood and parsimony corroborated the positioning of all new anuran trypanosomes in the aquatic clade but did not support the monophyly of anuran trypanosomes. However, all analyses always supported four major clades (An01-04) of anuran trypanosomes. Clade An04 is composed of trypanosomes from exotic anurans. Isolates in clades An01 and An02 were from Brazilian frogs and toads captured in the three biomes studied, Amazonia, the Pantanal and the Atlantic Forest. Clade An01 contains mostly isolates from Hylidae whereas clade An02 comprises mostly isolates from Bufonidae; and clade An03 contains trypanosomes from sand flies and anurans of Bufonidae, Leptodactylidae, and Leiuperidae exclusively from Amazonia. To our knowledge, this is the first study describing morphological and growth features, and molecular phylogenetic affiliation of trypanosomes from anurans and phlebotomines, incriminating these flies as invertebrate hosts and probably also as important vectors of Amazonian terrestrial anuran trypanosomes.