213 resultados para Biomedical informatics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Introduction: Internet users are increasingly using the worldwide web to search for information relating to their health. This situation makes it necessary to create specialized tools capable of supporting users in their searches. Objective: To apply and compare strategies that were developed to investigate the use of the Portuguese version of Medical Subject Headings (MeSH) for constructing an automated classifier for Brazilian Portuguese-language web-based content within or outside of the field of healthcare, focusing on the lay public. Methods: 3658 Brazilian web pages were used to train the classifier and 606 Brazilian web pages were used to validate it. The strategies proposed were constructed using content-based vector methods for text classification, such that Naive Bayes was used for the task of classifying vector patterns with characteristics obtained through the proposed strategies. Results: A strategy named InDeCS was developed specifically to adapt MeSH for the problem that was put forward. This approach achieved better accuracy for this pattern classification task (0.94 sensitivity, specificity and area under the ROC curve). Conclusions: Because of the significant results achieved by InDeCS, this tool has been successfully applied to the Brazilian healthcare search portal known as Busca Saude. Furthermore, it could be shown that MeSH presents important results when used for the task of classifying web-based content focusing on the lay public. It was also possible to show from this study that MeSH was able to map out mutable non-deterministic characteristics of the web. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Souza MA, Souza MH, Palheta RC Jr, Cruz PR, Medeiros BA, Rola FH, Magalhaes PJ, Troncon LE, Santos AA. Evaluation of gastrointestinal motility in awake rats: a learning exercise for undergraduate biomedical students. Adv Physiol Educ 33: 343-348, 2009; doi: 10.1152/advan.90176.2008.-Current medical curricula devote scarce time for practical activities on digestive physiology, despite frequent misconceptions about dyspepsia and dysmotility phenomena. Thus, we designed a hands-on activity followed by a small-group discussion on gut motility. Male awake rats were randomly submitted to insulin, control, or hypertonic protocols. Insulin and control rats were gavage fed with 5% glucose solution, whereas hypertonic-fed rats were gavage fed with 50% glucose solution. Insulin treatment was performed 30 min before a meal. All meals (1.5 ml) contained an equal mass of phenol red dye. After 10, 15, or 20 min of meal gavage, rats were euthanized. Each subset consisted of six to eight rats. Dye recovery in the stomach and proximal, middle, and distal small intestine was measured by spectrophotometry, a safe and reliable method that can be performed by minimally trained students. In a separate group of rats, we used the same protocols except that the test meal contained (99m)Tc as a marker. Compared with control, the hypertonic meal delayed gastric emptying and gastrointestinal transit, whereas insulinic hypoglycemia accelerated them. The session helped engage our undergraduate students in observing and analyzing gut motor behavior. In conclusion, the fractional dye retention test can be used as a teaching tool to strengthen the understanding of basic physiopathological features of gastrointestinal motility.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on ""smart"" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Research Foundation of the State of Sao Paulo (FAPESP)
Resumo:
State of Sao Paulo Research Foundation (FAPESP)
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of this article is to propose an integrated framework for extracting and describing patterns of disorders from medical images using a combination of linear discriminant analysis and active contour models. Methods: A multivariate statistical methodology was first used to identify the most discriminating hyperplane separating two groups of images (from healthy controls and patients with schizophrenia) contained in the input data. After this, the present work makes explicit the differences found by the multivariate statistical method by subtracting the discriminant models of controls and patients, weighted by the pooled variance between the two groups. A variational level-set technique was used to segment clusters of these differences. We obtain a label of each anatomical change using the Talairach atlas. Results: In this work all the data was analysed simultaneously rather than assuming a priori regions of interest. As a consequence of this, by using active contour models, we were able to obtain regions of interest that were emergent from the data. The results were evaluated using, as gold standard, well-known facts about the neuroanatomical changes related to schizophrenia. Most of the items in the gold standard was covered in our result set. Conclusions: We argue that such investigation provides a suitable framework for characterising the high complexity of magnetic resonance images in schizophrenia as the results obtained indicate a high sensitivity rate with respect to the gold standard. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In many data sets from clinical studies there are patients insusceptible to the occurrence of the event of interest. Survival models which ignore this fact are generally inadequate. The main goal of this paper is to describe an application of the generalized additive models for location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models. in this work the number of competing causes of the event of interest follows the negative binomial distribution. In this way, some well known models found in the literature are characterized as particular cases of our proposal. The model is conveniently parameterized in terms of the cured fraction, which is then linked to covariates. We explore the use of the gamlss package in R as a powerful tool for inference in long-term survival models. The procedure is illustrated with a numerical example. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
INTRODUCTION: Open access publishing is becoming increasingly popular within the biomedical sciences. SciELO, the Scientific Electronic Library Online, is a digital library covering a selected collection of Brazilian scientific journals many of which provide open access to full-text articles.This library includes a number of dental journals some of which may include reports of clinical trials in English, Portuguese and/or Spanish. Thus, SciELO could play an important role as a source of evidence for dental healthcare interventions especially if it yields a sizeable number of high quality reports. OBJECTIVE: The aim of this study was to identify reports of clinical trials by handsearching of dental journals that are accessible through SciELO, and to assess the overall quality of these reports. MATERIAL AND METHODS: Electronic versions of six Brazilian dental Journals indexed in SciELO were handsearched at www.scielo.br in September 2008. Reports of clinical trials were identified and classified as controlled clinical trials (CCTs - prospective, experimental studies comparing 2 or more healthcare interventions in human beings) or randomized controlled trials (RCTs - a random allocation method is clearly reported), according to Cochrane eligibility criteria. CRITERIA TO ASSESS METHODOLOGICAL QUALITY INCLUDED: method of randomization, concealment of treatment allocation, blinded outcome assessment, handling of withdrawals and losses and whether an intention-to-treat analysis had been carried out. RESULTS: The search retrieved 33 CCTs and 43 RCTs. A majority of the reports provided no description of either the method of randomization (75.3%) or concealment of the allocation sequence (84.2%). Participants and outcome assessors were reported as blinded in only 31.2% of the reports. Withdrawals and losses were only clearly described in 6.5% of the reports and none mentioned an intention-to-treat analysis or any similar procedure. CONCLUSIONS: The results of this study indicate that a substantial number of reports of trials and systematic reviews are available in the dental journals listed in SciELO, and that these could provide valuable evidence for clinical decision making. However, it is clear that the quality of a number of these reports is of some concern and that improvement in the conduct and reporting of these trials could be achieved if authors adhered to internationally accepted guidelines, e.g. the CONSORT statement.
Resumo:
OBJETIVOS: Desenvolver uma proposta educacional on-line sobre o tema úlcera por pressão para alunos e profissionais de enfermagem. MÉTODOS: Pesquisa aplicada, de produção tecnológica, composta pelas etapas de concepção/ planejamento e desenvolvimento, caracterizadas por um conjunto de procedimentos, documentação, digitalização de informações e de imagens. Foram utilizados recursos computacionais didáticos interativos como: o Cybertutor e o Homem Virtual. RESULTADOS: Desenvolvimento de uma proposta educacional virtual sobre úlcera por pressão (UP) dividida em módulos de aprendizagem, contendo lista de discussão, estudos de casos e recursos didáticos, tais como fotos e o Homem Virtual. CONCLUSÕES: Utilizou-se de novas tecnologias educacionais, com a finalidade de promover o aprendizado sobre UP a estudantes de graduação de enfermagem e possibilitar a educação continuada de enfermeiros, uma vez que as UP representam um desafio aos profissionais da saúde e aos serviços de saúde.
Resumo:
Studies about the inorganic nanoparticles applying for non-viral release of biological and therapeutic species have been intensified nowadays. This work reviews the preparation strategies and application of layered double hydroxides (LDH) as carriers for storing, carrying and control delivery of intercalated species as drugs and DNA for gene therapy. LDH show low toxicity, biocompatibility, high anion exchange capacity, surface sites for functionalization, and a suitable equilibrium between chemical stability and biodegradability. LDH can increase the intercalated species stability and promote its sub-cellular uptake for biomedical purposes. Concerning the healthy field, LDH have been evaluated for clinical diagnosis as a biosensor component.