60 resultados para Biology, Cell|Biology, Animal Physiology|Chemistry, Biochemistry|Health Sciences, Oncology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Ticks are obligatory blood-feeding arthropods and important vectors of both human and animal disease agents. Besides its metabolic role, insulin signaling pathway (ISP) is widely described as crucial for vertebrate and invertebrate embryogenesis, development and cell survival. In such cascade, Phosphatidylinositol 3-OH Kinase (PI3K) is hierarchically located upstream Protein Kinase B (PKB). To study the insulin-triggered pathway and its possible roles during embryogenesis we used a culture of embryonic Rhipicephalus microplus cells (BME26). Exogenous insulin elevated cell glycogen content in the absence of fetal calf serum (FCS) when compared to cells without treatment. Moreover, in the presence of PI3K inhibitors (Wortmannin or LY294002) these effects were blocked. We observed an increase in the relative expression level of PI3K`s regulatory subunit (p85), as determined by qRT-PCR. In the presence of PI3K inhibitors these effects on transcription were also reversed. Additionally, treatment with Wortmannin increased the expression level of the insulin-regulated downstream target glycogen synthase kinase 3 beta (GSK3 beta). The p85 subunit showed elevated transcription levels in ovaries from fully engorged females, but was differentially expressed during tick embryogenesis. These results strongly suggest the presence of an insulin responsive machinery in BME26 cells, and its correlation with carbohydrate/glycogen metabolism also during embryogenesis. (C) 2009 Published by Elsevier Inc.
Resumo:
Scavenger or Fc gamma receptors are important for capture and clearance of modified LDL particles by monocytes/macrophages. Uptake via scavenger receptors is not regulated by intracellular levels of cholesterol and in consequence, macrophages develop into foam cells in the arterial intima. The levels of scavenger receptor CD36 are increased in atherosclerotic lesions and there is evidence that some components of oxLDL auto-regulate the expression of this receptor. Fc gamma receptor expression is increased in cardiovascular diseases but it is not known weather their expression is regulated by oxLDL. The biological properties of oxLDLs vary depending on the degree of oxidation. In the present study we investigated the effect of LDL particles showing extensive or low oxidation (HoxLDL and LoxLDL) on the expression of CD36 and Fc gamma RII in a human monocytic cell line (THP-1), differentiated or not to macrophage, and the involvement of PPAR gamma. It was found that both forms of oxLDL are able to increase the expression of CD36 and Fc gamma RII and that this effect is dependent on the degree of oxidation and of the stage of cell differentiation ( monocyte or macrophage). We also showed that the increased expression of Fc gamma RII is dependent on PPAR. whereas that of the CD36 is independent of PPAR gamma. Copyright (c) 2008 S. Karger AG, Basel
Resumo:
Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of similar to 26 months and a nearly identical maximal life expectancy of similar to 37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.
Resumo:
A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zinc insertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Phi(f), and singlet oxygen quantum yield Phi(Delta)), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Phi(f) <= 0.02; Phi(Delta) similar to 0.8). An increase in lipophilicity and the presence of zinc in the porphyrin ring result in higher vesicle and cell uptake. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential, i.e., in uncoupled mitochondria PS binding decreases by up to 53%. The porphyrin substituted with octyl groups (TC8PyP) is the compound that is most enriched in mitochondria, and its zinc derivative (ZnTC8PyP) has the highest global uptake. The stronger membrane interaction of the zinc-substituted porphyrins is attributed to a complexing effect with phosphate groups of the phospholipids. Zinc insertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions which allow more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to the membrane binding and cell uptake, but it is not totally related to mitochondrial targeting.
Resumo:
This study describes the use of methylene blue (MB) plus light (photodynamic inactivation, PDI) in the presence of hydrogen peroxide (H(2)O(2)) to kill Staphylococcus aureus, Escherichia coli, and Candida albicans. When H(2)O(2) was added to MB plus light there was an increased antimicrobial effect, which could be due to a change in the type of ROS generated or increased microbial uptake of MB. To clarify the mechanism, the production of ROS was investigated in the presence and absence of H(2)O(2). It was observed that ROS production was almost inhibited by the presence of H(2)O(2) when cells were not present. In addition, experiments using different sequence combinations of MB and H(2)O(2) were performed and MB optical properties inside the cell were analyzed. Spectroscopy experiments suggested that the amount of MB was higher inside the cells when H(2)O(2) was used before or simultaneously with PDI, and ROS formation inside C. albicans cells confirmed that ROS production is higher in the presence of H(2)O(2). Moreover enzymatic reduction of MB by E. coli during photosensitizer uptake to the photochemically inactive leucoMB could be reversed by the oxidative effects of hydrogen peroxide, increasing ROS formation inside the microorganism. Therefore, the combination of a photosensitizer such as MB and H(2)O(2) is an interesting approach to improve PDI efficiency.
Resumo:
The understanding of complex physiological processes requires information from many different areas of knowledge. To meet this interdisciplinary scenario, the ability of integrating and articulating information is demanded. The difficulty of such approach arises because, more often than not, information is fragmented through under graduation education in Health Sciences. Shifting from a fragmentary and deep view of many topics to joining them horizontally in a global view is not a trivial task for teachers to implement. To attain that objective we proposed a course herein described Biochemistry of the envenomation response aimed at integrating previous contents of Health Sciences courses, following international recommendations of interdisciplinary model. The contents were organized by modules with increasing topic complexity. The full understanding of the envenoming pathophysiology of each module would be attained by the integration of knowledge from different disciplines. Active-learning strategy was employed focusing concept map drawing. Evaluation was obtained by a 30-item Likert-type survey answered by ninety students; 84% of the students considered that the number of relations that they were able to establish as seen by concept maps increased throughout the course. Similarly, 98% considered that both the theme and the strategy adopted in the course contributed to develop an interdisciplinary view.
Resumo:
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K-0.5 values for Na+ with minor alterations in K-0.5 values for K+ and N-H-4(+), causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 mu M ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: Recent studies have assessed the direct effects of smoking on cardiac remodeling and function. However, the mechanisms of these alterations remain unknown. The aim of this study was to investigate de role of cardiac NADPH oxidase and antioxidant enzyme system on ventricular remodeling induced by tobacco smoke. Methods: Male Wistar rats that weighed 200-230 g were divided into a control group (C) and an experimental group that was exposed to tobacco smoke for a period of two months (ETS). After the two-month exposure period, morphological, biochemical and functional analyses were performed. Results: The myocyte cross-sectional area and left ventricle end-diastolic dimension was increased 16.2% and 33.7%, respectively, in the ETS group. The interstitial collagen volume fraction was also higher in ETS group compared to the controls. In addition to these morphological changes, the ejection fraction and fractional shortening were decreased in the ETS group. Importantly, these alterations were related to augmented heart oxidative stress, which was characterized by an increase in NADPH oxidase activity, increased levels of lipid hydroperoxide and depletion of antioxidant enzymes (e.g., catalase, superoxide dismutase and glutathione peroxidase). In addition, cardiac levels of IFN-gamma, TNF-alpha and IL-10 were not different between the groups. Conclusion: Cardiac alterations that are induced by smoking are associated with increased NADPH oxidase activity, suggesting that this pathway plays a role in the ventricular remodeling induced by exposure to tobacco smoke. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
One of the main obstacles for understanding biological events involved in cancer is the lack of experimental models for in vitro studies especially for prostate cancer (PC).There are a limited number of PC cell lines being the majority originated from metastatic tumors mostly acquired from American Tissue Cell Culture which demands importation an expensive and bureaucratic process. Also it is well known that there are ethnic differences between populations concerning the behavior of tumors and the research based on cell lines derived from Brazilians should be interesting. Our aim was to develop tumor cell lines from primary PC.
Resumo:
Bladder cancer (BC) is the fourth most common cancer in the USA. In Brazil, BC represents 3% of the total existing carcinomas in the population and represents the second highest incidence among urological tumors. The majority of bladder cancer cell lines available were derived from Caucasians and established in the seventies or eighties. Thus, neoplasia development in these cells likely occurred in environment conditions vastly different than today. In the present study, we report the establishment and characterization of three Brazilian bladder cancer cell lines (BexBra1, BexBra2, and BexBra4). These cell lines may be helpful for dissecting the genetic and epigenetic aspects that trigger the progression of BC. Moreover, the development of a Brazilian representative of the disease will allow us to investigate the potential inter-racial differences of malignancy-associated phenotypes in bladder cancer.
Resumo:
Eriocaulaceae is a pantropical family that comprises about 1100 species distributed in 11 genera. The infrafamilial relationships are still unsatisfactorily resolved, because of the tiny flowers and generalized morphology, which makes the taxonomy very difficult. Flavonoid and naphthopyranone profiles have proved to be important in order to contribute to the alignment of genera into the family. We here present a survey of the chemical data of Eriocaulaceae with a discussion about their contribution to the taxonomy of Eriocaulaceae.
Resumo:
In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 (Ink4c) , a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.
Resumo:
Background/Aim. Granulocyte colony-stimulating factor (G-CSF) reduces myocardial injury and improves cardiac function after myocardial infarction (MI). We investigated the early alterations provided by G-CSF and the chronic repercussions in infarcted rats. Methods. Male Wistar rats (200-250g) received vehicle (MI) or G-CSF (MI-GCSF) (50 mu g/kg, sc) at 7, 3 and 1 days before MI surgery. Afterwards MI was produced and infarct size was measured 1 and 15 days after surgery. Expression of anti-and proapoptotic proteins was evaluated immediately before surgery. 24 hours after surgery, apoptotic nuclei were evaluated. Two weeks after MI, left ventricular (LV) function was evaluated, followed by in situ LV diastolic pressure-volume evaluation. Results. Infarct size was decreased by 1 day pretreatment before occlusion (36 +/- 2.8 vs. 44 +/- 2.1% in MI; P<0.05) and remained reduced at 15 days after infarction (28 +/- 2.2 vs. 36 +/- 1.4% in MI; P<0.05). G-CSF pretreatment increased Bcl-2 and Bcl-xL protein expression, but did not alter Bax in LV. Apoptotic nuclei were reduced by treatment (Sham: 0.46 +/- 0.42, MI: 15.5 +/- 2.43, MI-GCSF: 5.34 +/- 3.34%; P<0.05). Fifteen days after MI, cardiac function remained preserved in G-CSF pretreated rats. The LV dilation was reduced in MI-G-CSF group as compared to MI rats, being closely associated with infarct size. Conclusion. The early beneficial effects of G-CSF were essentials to preserve cardiac function at a chronic stage of myocardial infarction. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
We examined the effect of Angiotensin II (Ang II) on the interaction between the Ca(2+)/CaM complex and hNHE1. Considering that calmodulin binds to NHE1 at two sites (A and B), amino acids at both sites were modified and two mutants were constructed: SA(1K3R/4E) and SB(1K3R/4E). Wild type and mutants were transfected into PS120 cells and their activity was examined by H(+) flux (J(H+)). The basal J(H+) of wild type was 4.71 +/- 0.57 (mM/min), and it was similar in both mutants. However, the mutations partially impaired the binding of CaM to hNHE1. Ang II (10(-12) and 10(-9) M) increased the J(H+) in wild type and SB. Ang II (10(-6) M) increased this parameter only in SA. Ang II (10(-9) M) maintained the expression of calmodulin in wild type or mutants, and Ang II (10(-6) M) decreased it in wild type or SA, but not in SB. Dimethyl-Bapta-AM (10(-7) M), a calcium chelator, suppressed the effect of Ang II (10(-9) M) in wild type. With Ang II (10(-6) M), Bapta failed to affect wild type or SA, but it increased the J(H+) in SB. W13 or calmidazolium chloride (10(-5) M), two distinct calmodulin inhibitors, decreased the effect of Ang II (10(-9) M) in wild type or SB. With Ang II (10(-6) M), W13 or calmidazolium chloride decreased the J(H+) in wild type or SA and increased it in SB. Thus, with Ang II (10(-12) and 10(-9) M), site A seems to be responsible for the stimulation of hNHE1 and with Ang II (10(-6) M), site B is important to maintain its basal activity. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Background/Aims: It has been widely accepted that chloride ions moving along chloride channels act to dissipate the electrical gradient established by the electrogenic transport of H(+) ions performed by H(+)-ATPase into subcellular vesicles. Largely known in intracellular compartments, this mechanism is also important at the plasma membrane of cells from various tissues, including kidney. The present work was performed to study the modulation of plasma membrane H(+)-ATPase by chloride channels, in particular, CFTR and ClC-5 in kidney proximal tubule. Methods and Results: Using in vivo stationary microperfusion, it was observed that ATPase-mediated HCO(3)(-) reabsorption was significantly reduced in the presence of the Cl(-) channels inhibitor NPPB. This effect was confirmed in vitro by measuring the cell pH recovery rates after a NH(4)Cl pulse in immortalized rat renal proximal tubule cells, IRPTC. In these cells, even after abolishing the membrane potential with valinomycin, ATPase activity was seen to be still dependent on Cl(-). siRNA-mediated CFTR channels and ClC-5 chloride-proton exchanger knockdown significantly reduced H(+)-ATPase activity and V-ATPase B2 subunit expression. Conclusion: These results indicate a role of chloride in modulating plasma membrane H(+)-ATPase activity in proximal tubule and suggest that both CFTR and ClC-5 modulate ATPase activity. Copyright (C) 2010 S. Karger AG, Basel