2 resultados para Binary Optical Element

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

FS CMa type stars are a group of Galactic objects with the B[e] phenomenon. They exhibit strong emission-line spectra and infrared excesses, which are most likely due to recently formed circumstellar dust. The group content and identification criteria were described in the first two papers of the series. In this paper we report our spectroscopic and photometric observations of the optical counterpart of IRAS 00470+6429 obtained in 2003-2008. The optical spectrum is dominated by emission lines, most of which have P Cyg type profiles. We detected significant brightness variations, which may include a regular component, and variable spectral line profiles in both shape and position. The presence of a weak Li I 6708 angstrom line in the spectrum suggests that the object is most likely a binary system with a B2-B3 spectral-type primary companion of a luminosity log L/L(circle dot) = 3.9 +/- 0.3 and a late-type secondary companion. We estimate a distance toward the object to be 2.0 +/- 0.3 kpc from the Sun.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.