73 resultados para Binary Cyclic Codes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work studies the turbo decoding of Reed-Solomon codes in QAM modulation schemes for additive white Gaussian noise channels (AWGN) by using a geometric approach. Considering the relations between the Galois field elements of the Reed-Solomon code and the symbols combined with their geometric dispositions in the QAM constellation, a turbo decoding algorithm, based on the work of Chase and Pyndiah, is developed. Simulation results show that the performance achieved is similar to the one obtained with the pragmatic approach with binary decomposition and analysis.
Resumo:
Several real problems involve the classification of data into categories or classes. Given a data set containing data whose classes are known, Machine Learning algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, performing the desired discrimination. Some learning techniques are originally conceived for the solution of problems with only two classes, also named binary classification problems. However, many problems require the discrimination of examples into more than two categories or classes. This paper presents a survey on the main strategies for the generalization of binary classifiers to problems with more than two classes, known as multiclass classification problems. The focus is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are combined to obtain the final prediction.
Resumo:
OBJECTIVES: The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. MATERIAL AND METHODS: Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey's post-hoc test (p<0.05). RESULTS: Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. CONCLUSIONS: The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface.
Resumo:
This paper deals with the emission of gravitational radiation in the context of a previously studied metric nonsymmetric theory of gravitation. The part coming from the symmetric part of the metric coincides with the mass quadrupole moment result of general relativity. The one associated to the antisymmetric part of the metric involves the dipole moment of the fermionic charge of the system. The results are applied to binary star systems and the decrease of the period of the elliptical motion is calculated.
Cyclic nitroxides inhibit the toxicity of nitric oxide-derived oxidants: mechanisms and implications
Resumo:
The substantial therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) and related cyclic nitroxides as antioxidants has stimulated innumerous studies of their reactions with reactive oxygen species. In comparison, reactions of nitroxides with nitric oxide-derived oxidants have been less frequently investigated. Nevertheless, this is relevant because tempol has also been shown to protect animals from injuries associated with inflammatory conditions, which are characterized by the increased production of nitric oxide and its derived oxidants. Here, we review recent studies addressing the mechanisms by which cyclic nitroxides attenuate the toxicity of nitric oxidederived oxidants. As an example, we present data showing that tempol protects mice from acetaminophen-induced hepatotoxicity and discuss the possible protection mechanism. In view of the summarized studies, it is proposed that nitroxides attenuate tissue injury under inflammatory conditions mainly because of their ability to react rapidly with nitrogen dioxide and carbonate radical. In the process the nitroxides are oxidized to the corresponding oxammonium cation, which, in turn, can be recycled back to the nitroxides by reacting with upstream species, such as peroxynitrite and hydrogen peroxide, or with cellular reductants. An auxiliary protection mechanism may be down-regulation of inducible nitric oxide synthase expression. The possible therapeutic implications of these mechanisms are addressed.
Resumo:
Corpus luteum is a temporary endocrine gland that regulates either the estrous cycle and pregnancy. It presents extreme dependency on the adequate blood supply. This work aims to evaluate goat corpus luteum (CL) vascular density (VD) over the estrous cycle. For that purpose, 20 females were submitted to estrus synchronization/ovulation treatment using a medroxyprogesterone intra-vaginal sponge as well as intramuscular (IM) application of cloprostenol and equine chorionic gonadotrophine (eCG). After sponge removal, estrus was identified at about 72hs. Once treatment was over, female goats were then subdivided into 4 groups (n=5 each) and slaughtered on days 2, 12, 16 and 22 after ovulation (p.o). Ovaries were collected, withdrawn and weighted. CL and ovaries had size and area recorded. Blood samples were collected and the plasma progesterone (P4) was measured through RIA commercial kits. The VD was 24.42±6.66, 36.26±5.61, 8.59±2.2 and 3.97±1.12 vessels/mm² for days 2, 12, 16 and 22 p.o, respectively. Progesterone plasma concentrations were 0.49±0.08, 2.63±0.66, 0.61±0.14 and 0.22±0.04ng/ml for days 2, 12, 16 e 22 p.o, respectively. Studied parameters were affected by the estrous cycle phase. Values greater than 12 p.o were observed. In the present work we observed that ovulation occurred predominantly in the right ovary (70% of the animals), which in turn presented bigger measures than the contra lateral one. There is a meaningful relationship between the weight and size of the ovary and these of CL (r=0.87, r=0.70, respectively, p<0.05). It is possible to conclude that morphology of goat's ovaries and plasma progesterone concentration changed according to estrous cycle stages. We propose these parameters can be used as indicators of CL functional activity.
Resumo:
Cyclic pseudo-galactooligosaccharides were synthesized by cyclooligomerisation of isomeric azido-alkyne derivatives of beta-D-galactopyranose under Cu(I)-catalysed azide-alkyne 1,3-dipolar cycloaddition reaction conditions. The principal products isolated were cyclic dimers and trimers, with lower amounts of cyclic tetramer and pentamer also evident in some cases. Molecular mechanics calculations suggest very compact but flexible structures for the cyclic trimers, with secondary OH groups exposed outside the macrocycle and available for enzymatic glycosylation. The cyclic dimers and trimers represent a new type of acceptor substrate for Trypanosoma cruzi trans-sialidase, giving rise to doubly and triply sialylated glycomacrocycles, respectively.
Resumo:
Context. Unevolved metal-poor stars constitute a fossil record of the early Galaxy, and can provide invaluable information on the properties of the first generations of stars. Binary systems also provide direct information on the stellar masses of their member stars. Aims. The purpose of this investigation is a detailed abundance study of the double-lined spectroscopic binary CS 22876-032, which comprises the two most metal-poor dwarfs known. Methods. We used high-resolution, high-S/N ratio spectra from the UVES spectrograph at the ESO VLT telescope. Long-term radial-velocity measurements and broad-band photometry allowed us to determine improved orbital elements and stellar parameters for both components. We used OSMARCS 1D models and the TURBOSPECTRUM spectral synthesis code to determine the abundances of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also used the (COBOLD)-B-5 model atmosphere code to compute the 3D abundance corrections, notably for Li and O. Results. We find a metallicity of [Fe/H] similar to -3.6 for both stars, using 1D models with 3D corrections of similar to -0.1 dex from averaged 3D models. We determine the oxygen abundance from the near-UV OH bands; the 3D corrections are large, -1 and -1.5 dex for the secondary and primary respectively, and yield [O/Fe] similar to 0.8, close to the high-quality results obtained from the [OI] 630 nm line in metal-poor giants. Other [alpha/Fe] ratios are consistent with those measured in other dwarfs and giants with similar [Fe/H], although Ca and Si are somewhat low ([X/Fe] less than or similar to 0). Other element ratios follow those of other halo stars. The Li abundance of the primary star is consistent with the Spite plateau, but the secondary shows a lower abundance; 3D corrections are small. Conclusions. The Li abundance in the primary star supports the extension of the Spite Plateau value at the lowest metallicities, without any decrease. The low abundance in the secondary star could be explained by endogenic Li depletion, due to its cooler temperature. If this is not the case, another, yet unknown mechanism may be causing increased scatter in A( Li) at the lowest metallicities.
Resumo:
Context. The star HD 87643, exhibiting the ""B[e] phenomenon"", has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended reflection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, and ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands. Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presence of the companion is confirmed by the MIDI and NACO data, although with a lower confidence. The companion is separated by similar to 34 mas with a roughly north-south orientation. The period must be large (several tens of years) and hence the orbital parameters are not determined yet. Binarity with high eccentricity might be the key to interpreting the extreme characteristics of this system, namely a dusty circumstellar envelope around the primary, a compact dust nebulosity around the binary system and a complex extended nebula suggesting past violent ejections.
Resumo:
Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.
Resumo:
Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars - frequency, mass ratio & orbital separation - are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only similar to 5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (> 6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (similar to 1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (< 1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss - likely via case A mass transfer or a contact configuration - or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.
Resumo:
Context. About 2/3 of the Be stars present the so-called V/R variations, a phenomenon characterized by the quasi-cyclic variation in the ratio between the violet and red emission peaks of the HI emission lines. These variations are generally explained by global oscillations in the circumstellar disk forming a one-armed spiral density pattern that precesses around the star with a period of a few years. Aims. This paper presents self-consistent models of polarimetric, photometric, spectrophotometric, and interferometric observations of the classical Be star zeta Tauri. The primary goal is to conduct a critical quantitative test of the global oscillation scenario. Methods. Detailed three-dimensional, NLTE radiative transfer calculations were carried out using the radiative transfer code HDUST. The most up-to-date research on Be stars was used as input for the code in order to include a physically realistic description for the central star and the circumstellar disk. The model adopts a rotationally deformed, gravity darkened central star, surrounded by a disk whose unperturbed state is given by a steady-state viscous decretion disk model. It is further assumed that this disk is in vertical hydrostatic equilibrium. Results. By adopting a viscous decretion disk model for zeta Tauri and a rigorous solution of the radiative transfer, a very good fit of the time-average properties of the disk was obtained. This provides strong theoretical evidence that the viscous decretion disk model is the mechanism responsible for disk formation. The global oscillation model successfully fitted spatially resolved VLTI/AMBER observations and the temporal V/R variations in the H alpha and Br gamma lines. This result convincingly demonstrates that the oscillation pattern in the disk is a one-armed spiral. Possible model shortcomings, as well as suggestions for future improvements, are also discussed.
Resumo:
Context. Emission lines formed in decretion disks of Be stars often undergo long-term cyclic variations, especially in the violet-to-red (V/R) ratio of their primary components. The underlying structural and dynamical variations of the disks are only partly understood. From observations of the bright Be-shell star. Tau, the possibly broadest and longest data set illustrating the prototype of this behaviour was compiled from our own and archival observations. It comprises optical and infrared spectra, broad-band polarimetry, and interferometric observations. Aims. The dense, long-time monitoring permits a better separation of repetitive and ephemeral variations. The broad wavelength coverage includes lines formed under different physical conditions, i.e. different locations in the disk, so that the dynamics can be probed throughout much of the disk. Polarimetry and interferometry constrain the spatial structure. All together, the objective is a better understand the dynamics and life cycle of decretion disks. Methods. Standard methods of data acquisition, reduction, and analysis were applied. Results. From 3 V/R cycles between 1997 and 2008, a mean cycle length in Ha of 1400-1430 days was derived. After each minimum in V/R, the shell absorption weakens and splits into two components, leading to 3 emission peaks. This phase may make the strongest contribution to the variability in cycle length. There is no obvious connection between the V/R cycle and the 133-day orbital period of the not otherwise detected companion. V/R curves of different lines are shifted in phase. Lines formed on average closer to the central star are ahead of the others. The shell absorption lines fall into 2 categories differing in line width, ionization/excitation potential, and variability of the equivalent width. They seem to form in separate regions of the disk, probably crossing the line of sight at different times. The interferometry has resolved the continuum and the line emission in Br gamma and HeI 2.06. The phasing of the Br gamma emission shows that the photocenter of the line-emitting region lies within the plane of the disk but is offset from the continuum source. The plane of the disk is constant throughout the observed V/R cycles. The observations lay the foundation for the fully self-consistent, one-armed, disk-oscillation model developed in Paper II.
Resumo:
We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.
Resumo:
The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.