55 resultados para Bayesian statistical decision theory

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The present work aims at the application of the decision theory to radiological image quality control ( QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Methods: Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Results: Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. Conclusion: The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, I investigate the use of Bayesian updating rules applied to modeling how social agents change their minds in the case of continuous opinion models. Given another agent statement about the continuous value of a variable, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a uniform distribution. This represents the idea that the other agent might have no idea about what is being talked about. The effect of updating only the first moments of the distribution will be studied, and we will see that this generates results similar to those of the bounded confidence models. On also updating the second moment, several different opinions always survive in the long run, as agents become more stubborn with time. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new complex network model is proposed which is founded on growth, with new connections being established proportionally to the current dynamical activity of each node, which can be understood as a generalization of the Barabasi-Albert static model. By using several topological measurements, as well as optimal multivariate methods (canonical analysis and maximum likelihood decision), we show that this new model provides, among several other theoretical kinds of networks including Watts-Strogatz small-world networks, the greatest compatibility with three real-world cortical networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creation of cold dark matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework, we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin, and Brandenberger, MNRAS 291, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the Lambda CDM model. The difference between the CCDM and Lambda CDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple chi(2)-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances, the CCDM scenario analyzed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating Lambda CDM cosmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, 2 different approaches for estimating the directional wave spectrum based on a vessel`s 1st-order motions are discussed, and their predictions are compared to those provided by a wave buoy. The real-scale data were obtained in an extensive monitoring campaign based on an FPSO unit operating at Campos Basin, Brazil. Data included vessel motions, heading and tank loadings. Wave field information was obtained by means of a heave-pitch-roll buoy installed in the vicinity of the unit. `two of the methods most widely used for this kind of analysis are considered, one based on Bayesian statistical inference, the other consisting of a parametrical representation of the wave spectrum. The performance of both methods is compared, and their sensitivity to input parameters is discussed. This analysis complements a set of previous validations based on numerical and towing-tank results and allows for a preliminary evaluation of reliability when applying the methodology at full scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is currently one of the most widely used methods for studying human brain function in vivo. Although many different approaches to fMRI analysis are available, the most widely used methods employ so called ""mass-univariate"" modeling of responses in a voxel-by-voxel fashion to construct activation maps. However, it is well known that many brain processes involve networks of interacting regions and for this reason multivariate analyses might seem to be attractive alternatives to univariate approaches. The current paper focuses on one multivariate application of statistical learning theory: the statistical discrimination maps (SDM) based on support vector machine, and seeks to establish some possible interpretations when the results differ from univariate `approaches. In fact, when there are changes not only on the activation level of two conditions but also on functional connectivity, SDM seems more informative. We addressed this question using both simulations and applications to real data. We have shown that the combined use of univariate approaches and SDM yields significant new insights into brain activations not available using univariate methods alone. In the application to a visual working memory fMRI data, we demonstrated that the interaction among brain regions play a role in SDM`s power to detect discriminative voxels. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of masses for neutron stars is analysed using the Bayesian statistical inference, evaluating the likelihood of the proposed Gaussian peaks by using 54 measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.37 M(circle dot) and a much wider second peak at 1.73 M(circle dot). The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to `label` the systems has been made here). They also accommodate the recent findings of similar to M(circle dot) masses quite naturally. Finally, we explore the existence of a subgroup around 1.25 M(circle dot), finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to the O-Mg-Ne core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a non-equilibrium three-state model whose dynamics is Markovian and displays the same symmetry as the three-state Potts model, i.e. the transition rates are invariant under the cyclic permutation of the states. Unlike the Potts model, detailed balance is, in general, not satisfied. The aging and the stationary properties of the model defined on a square lattice are obtained by means of large-scale Monte Carlo simulations. We show that the phase diagram presents a critical line, belonging to the three-state Potts universality class, that ends at a point whose universality class is that of the Voter model. Aging is considered on the critical line, at the Voter point and in the ferromagnetic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider bipartitions of one-dimensional extended systems whose probability distribution functions describe stationary states of stochastic models. We define estimators of the information shared between the two subsystems. If the correlation length is finite, the estimators stay finite for large system sizes. If the correlation length diverges, so do the estimators. The definition of the estimators is inspired by information theory. We look at several models and compare the behaviors of the estimators in the finite-size scaling limit. Analytical and numerical methods as well as Monte Carlo simulations are used. We show how the finite-size scaling functions change for various phase transitions, including the case where one has conformal invariance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex networks obtained from real-world networks are often characterized by incompleteness and noise, consequences of imperfect sampling as well as artifacts in the acquisition process. Because the characterization, analysis and modeling of complex systems underlain by complex networks are critically affected by the quality and completeness of the respective initial structures, it becomes imperative to devise methodologies for identifying and quantifying the effects of the sampling on the network structure. One way to evaluate these effects is through an analysis of the sensitivity of complex network measurements to perturbations in the topology of the network. In this paper, measurement sensibility is quantified in terms of the relative entropy of the respective distributions. Three particularly important kinds of progressive perturbations to the network are considered, namely, edge suppression, addition and rewiring. The measurements allowing the best balance of stability (smaller sensitivity to perturbations) and discriminability (separation between different network topologies) are identified with respect to each type of perturbation. Such an analysis includes eight different measurements applied on six different complex networks models and three real-world networks. This approach allows one to choose the appropriate measurements in order to obtain accurate results for networks where sampling bias cannot be avoided-a very frequent situation in research on complex networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the raise and peel model of a one-dimensional fluctuating interface in the presence of an attractive wall. The model can also describe a pair annihilation process in disordered unquenched media with a source at one end of the system. For the stationary states, several density profiles are studied using Monte Carlo simulations. We point out a deep connection between some profiles seen in the presence of the wall and in its absence. Our results are discussed in the context of conformal invariance ( c = 0 theory). We discover some unexpected values for the critical exponents, which are obtained using combinatorial methods. We have solved known ( Pascal`s hexagon) and new (split-hexagon) bilinear recurrence relations. The solutions of these equations are interesting in their own right since they give information on certain classes of alternating sign matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.