201 resultados para BONE-SCREW
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We assess the effects of chemical processing, ethylene oxide sterilization, and threading on bone surface and mechanical properties of bovine undecalcified bone screws. In addition, we evaluate the possibility of manufacturing bone screws with predefined dimensions. Scanning electronic microscopic images show that chemical processing and ethylene oxide treatment causes collagen fiber amalgamation on the bone surface. Processed screws hold higher ultimate loads under bending and torsion than the in natura bone group, with no change in pull-out strength between groups. Threading significantly reduces deformation and bone strength under torsion. Metrological data demonstrate the possibility of manufacturing bone screws with standardized dimensions.
Resumo:
Objective: To introduce a new coupling system between screw driver and interference screw, and biomechanical tests that validate the safety of its application. Methods: The new system was submitted to biomechanical torsion assays. Two types of analysis were performed: maximum torque of manual insertion of the screws into bovine bone; destructive assays of torsion of the system using an INSTRON 55MT machine. The same tests were also performed on a control group, using a commercially available interference screw coupling system (Acufex (R)). Results: In the tests on manual insertion of screws in bovine femurs, the average values found with a digital torque meter were 1.958 N/m for Acufex (R) and 2.563 N/m for FMRP. Considering p>0.05, there were no statistical differences between the two groups (p=0.02) in the values for maximum torque of insertion, in the two systems studied. The average values for maximum torque of torsion resisted by the screw were 15N/m for the Acufex (R) screw and 13N/m for the FMRP screw, again with no statistical differences between the two groups (p>0.05). In the evaluation of angular deformation, there was also no significant difference between the two screw types (p=0.15). Conclusion: The new coupling system for interference screws developed at FMRP-USP revealed a torsion resistance that is comparable with the system already available on the market and regulated for international use.
Resumo:
It has recently been reported that machined and microrough (micro) Brazilian titanium (Ti) implants have good production standards. The aim of this study was to evaluate in vivo bone formation around 2 different implant surfaces placed in dog's mandible. Thirty-two screw-typed Ti implants were used in this study. Mandibular premolars were extracted in 8 dogs and, after 12 weeks, 2 machined (Neodent Titamax, Brazil) and 2 micro implants (Neodent Titamax Porous, Brazil) were placed in each animal. Biopsies were taken at 3 and 8 weeks post-implantation and stained with Stevenel's blue and Alizarin red for histomorphometric measurements of bone-to-implant contact (BIC), bone area between threads (BABT) and bone area within the mirror area (BAMA). Data were analyzed statistically by two-way ANOVA (α=0.05). While at 3 weeks micro implants exhibited significantly more BIC than machined ones (55 ± 12.5% and 35.6 ± 15%, p<0.05), no significant difference in such parameter was detected at 8 weeks (51.2 ± 21% and 48.6 ± 18.1%, p>0.05). There were no significant differences in BABT and BAMA between the implants. Micro surfaces promoted higher contact osteogenesis. These data indicate that this commercial micro Ti implant surface enhances contact osteogenesis at an early post-implantation period when compared to the machined one.
Resumo:
We conducted a prospective randomised study comparing the clinical, functional and radiographic results of 46 patients treated for scaphoid nonunion using a vascularised bone graft from the dorsal and distal aspect of the radius (group I), relative to 40 patients treated by means of a conventional non-vascularised bone graft from the distal radius (group II). Surgical findings included 30 sclerotic, poorly-vascularised scaphoids in group I versus 20 in group II. Bone fusion was achieved in 89.1% of group I and 72.5% of group II patients (p = 0.024). Functional results were good to excellent in 72.0% of the patients in group I and 57.5% in group II. Considering only patients with sclerotic, poorly-vascularised scaphoids, the mean final outcome scores obtained were 7.5 and 6.0 for groups I and group II, respectively. We conclude that vascularised bone grafting yields superior results and is more efficient when there is a sclerotic, poorly-vascularised proximal pole in patients in scaphoid nonunion.
Resumo:
This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws offree angulanon were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the fcworable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique,fractures, without compromising mandibular dental or neurovascular structures. J Vet Dent 24 (7); 212 - 221, 2010
Resumo:
Purpose: To evaluate the biomechanical fixation, bone-to-implant contact (BIC), and bone morphology of screw-type root-form implants with healing chambers with as-machined or dual acid-etched (DAE) surfaces in a canine model. Materials and Methods: The animal model included the placement of machined (n = 24) and DAE (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Following euthanasia, half of the specimens were subjected to biomechanical testing (torque to interface failure) and the other half were processed for histomorphologic and histomorphometric (%BIC) assessments. Statistical analyses were performed by one-way analysis of variance at the 95% confidence level and the Tukey post hoc test for multiple comparisons. Results: At 4 weeks, the DAE surface presented significantly higher mean values for torque to interface failure overall. A significant increase in %BIC values occurred for both groups over time. For both groups, bone formation through the classic appositional healing pathway was observed in regions where intimate contact between the implant and the osteotomy walls occurred immediately after implantation. Where contact-free spaces existed after implantation (healing chambers), an intramembranous-like healing mode with newly formed woven bone prevailed. Conclusions: In the present short-term evaluation, no differences were observed in BIC between groups; however, an increase in biomechanical fixation was seen from 2 to 4 weeks with the DAE surface. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:75-82
Resumo:
Background: This study evaluated the effects of diclofenac sodium and meloxicam on peri-implant bone healing. Methods: Thirty male rats were divided into three groups: the control group (CG) received no drug; the diclofenac sodium group (DSG) received 1.07 mg/kg twice a day for 5 days; and the meloxicam group (MG) received 0.2 mg/kg daily for 5 days. A screw-shaped titanium implant was placed in the tibia. Fluorochromes, oxytetracycline (OxT), calcein (CA), and alizarin (AL), were injected at 7, 14, and 21 days, respectively, after implantation, and the animals were sacrificed 28 days after implant placement. The percentages of OxT-, CA-, and AL-labeled bone as well as the percentages of bone-to-implant contact (BIC), cortical bone area (CBA), and trabecular bone area (TBA) within the implant threads were evaluated. Results: Bone healing was delayed in the DSG during the first 14 days after implant placement (OxT-labeled bone: DSG: 5.3% +/- 7.3% versus CG: 13.2% +/- 9.8%, P= 0.002, and versus MG: 14.4% +/- 13.1%, P = 0.05). The percentages of BIC (DSG: 49.6% +/- 21.9%; MG: 67.1% +/- 22.8%; and CG: 68.1% +/- 22.8%) and CBA (DSG: 63.7% +/- 21.2%; MG: 82.7% +/- 12.4%; CG: 84.9% +/- 10.6%) were lower in the DSG compared to the MG and CG (P<0.001). The percentage of TBA was significantly greater in the DSG compared to the MG and CG (DSG: 36.3% +/- 21.2% versus MG: 17.3% +/- 12.7% and versus CG: 15.1% +/- 10.6%; P<0.001). Conclusion: Diclofenac sodium seemed to delay peri-implant bone healing and to decrease BIC, whereas meloxicam had no negative effect on peri-implant bone healing.
Resumo:
The aim of this study was to investigate the histological and histomorphometrical bone response to three Biosilicates with different crystal phases comparing them to Bioglass®45S5 implants used as control. Ceramic glass Biosilicate and Bioglass®45S5 implants were bilaterally inserted in rabbit femurs and harvested after 8 and 12 weeks. Histological examination did not revealed persistent inflammation or foreign body reaction at implantation sites. Bone and a layer of soft tissue were observed in close contact with the implant surfaces in the medullary canal. The connective tissue presented few elongated cells and collagen fibers located parallel to implant surface. Cortical portion after 8 weeks was the only area that demonstrated significant difference between all tested materials, with Biosilicate 1F and Biosilicate 2F presenting higher bone formation than Bioglass®45S5 and Biosilicate® vitreo (p=0.02). All other areas and periods were statistically non-significant (p>0.05). In conclusion, all tested materials were considered biocompatible, demonstrating surface bone formation and a satisfactory behavior at biological environment.
Resumo:
The aim of this study was to quantify radiographically the periapical bone resorption in dogs' teeth contaminated with bacterial endotoxin (LPS), associated or not with calcium hydroxide. After pulp tissue removal, 60 premolars were randomly assigned to 4 groups and were either filled with LPS (group 1), filled with LPS plus calcium hydroxide (group 2) or filled with saline (group 3) for a period of 30 days. In group 4, periapical lesion formation was induced with no canal treatment. Standardized radiographs were taken at the beginning of the treatment and after 30 days and the Image J Program was used for measurement of periapical lesion size. Periapical lesions were observed in groups 1 (average of 8.44 mm2) and 4 (average of 3.02 mm2). The lamina dura was intact and there were no areas of periapical bone resorption in groups 2 and 3. It may be concluded that calcium hydroxide was effective in inactivating LPS, as demonstrated by the absence of apical periodontitis in the roots that were filled with bacterial endotoxin plus calcium hydroxide.
Resumo:
The aim of this study was to evaluate in situ changes in the alveolar crest bone height around immediate implant-supported crowns in comparison to tooth-supported crowns (control) with the cervical margins located at the bone crest level, without occlusal load. In Group I, after extraction of 12 mandibular premolars from 4 adult dogs, implants from Branemark System (MK III TiU RP 4.0 x 11.5 mm) were placed to retain complete acrylic crowns. In Group II, premolars were prepared to receive complete metal crowns. Sixteen weeks after placement of the crowns (38 weeks after tooth extraction), the height of the alveolar bone crest was measured with a digital caliper. Data were analyzed statistically by the Mann-Whitney test at 5% significance level. The in situ analysis showed no statistically significant difference (p=0.880) between the implant-supported and the tooth-supported groups (1.528 + 0.459 mm and 1.570 + 0.263 mm, respectively). Based on the findings of the present study, it may be concluded that initial peri-implant bone loss may result from the remodeling process necessary to establish the biological space, similar to which occurs with tooth-supported crowns.
Resumo:
This study evaluated the loss of the torque applied after use of new screws and after successive tightening. Four infrastructures (IE), using UCLA castable abutment type, were cast in cobalt-chromium alloy and new abutment screws (G1) were used in a first moment. Subsequently, the same abutment screws were used a second time (G2) and more than two times (G3). The values of the torques applied and detorques were measured with a digital torque wrench to obtain the values of initial tightening loss (%). Data were analyzed by ANOVA and Tukey's test (?=0.05). Significant differences were observed between the G1 (50.71% ± 11.36) and G2 (24.01% ± 3.33) (p=0.000) and between G1 (50.71% ± 11.36) and G3 (25.60% ± 4.64) (p=0.000). There was no significant difference between G2 and G3 (p=0.774). Within the limitations of the study, it may be concluded that the percentage of the initial torque loss is lower when screws that already suffered the application of an initial torque were used, remaining stable after application of successive torques.
Resumo:
Caffeine induces loss of calcium and influences the normal development of bone. This study investigated the effects of coffee on bone metabolism in rats by biochemical measurement of calcium, bone densitometry and histometry. Male rats, born of female treated daily with coffee and with coffee intake since born, were anesthetized, subjected to extraction of the upper right incisor, and sacrificed 7, 21 and 42 days after surgery. Blood and urine samples were taken, and their maxilla radiographed and processed to obtain 5-µm-thick semi-serial sections stained with hematoxylin and eosin. The volume and bone quality were estimated using an image-analysis software. The results showed significantly greater amount of calcium in the plasma (9.40 ± 1.73 versus 9.80 ± 2.05 mg%) and urine (1.00 ± 0.50 versus 1.25 ± 0.70 mg/24 h) and significantly less amount in bone (90.0 ± 1.94 versus 86.0 ± 2.12 mg/mg bone), reduced bone mineral density (1.05 ± 0.11 versus 0.65 ± 0.15 mmAL), and lower amount of bone (76.19 ± 1.6 versus 53.41 ± 2.1 %) (ANOVA; p≤0.01) in animals treated with coffee sacrificed after 42 days. It may be concluded that coffee/caffeine intake caused serious adverse effects on calcium metabolism in rats, including increased levels of calcium in the urine and plasma, decreased bone mineral density and lower volume of bone, thus delaying the bone repair process.
Resumo:
Prostaglandins control osteoblastic and osteoclastic function under physiological or pathological conditions and are important modulators of the bone healing process. The non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and consequently prostaglandins synthesis. Experimental and clinical evidence has indicated a risk for reparative bone formation related to the use of non-selective (COX-1 and COX-2) and COX-2 selective NSAIDs. Ketorolac is a non-selective NSAID which, at low doses, has a preferential COX-1 inhibitory effect and etoricoxib is a new selective COX-2 inhibitor. Although literature data have suggested that ketorolac can interfere negatively with long bone fracture healing, there seems to be no study associating etoricoxib with reparative bone formation. Paracetamol/acetaminophen, one of the first choices for pain control in clinical dentistry, has been considered a weak anti-inflammatory drug, although supposedly capable of inhibiting COX-2 activity in inflammatory sites. OBJECTIVE: The purpose of the present study was to investigate whether paracetamol, ketorolac and etoricoxib can hinder alveolar bone formation, taking the filling of rat extraction socket with newly formed bone as experimental model. MATERIAL AND METHODS: The degree of new bone formation inside the alveolar socket was estimated two weeks after tooth extraction by a differential point-counting method, using an optical microscopy with a digital camera for image capture and histometry software. Differences between groups were analyzed by ANOVA after confirming a normal distribution of sample data. RESULTS AND CONCLUSIONS: Histometric results confirmed that none of the tested drugs had a detrimental effect in the volume fraction of bone trabeculae formed inside the alveolar socket.
Resumo:
Epidemiological studies have suggested that cola beverage consumption may affect bone metabolism and increase bone fracture risk. Experimental evidence linking cola beverage consumption to deleterious effects on bone is lacking. Herein, we investigated whether cola beverage consumption from weaning to early puberty delays the rate of reparative bone formation inside the socket of an extracted tooth in rats. Twenty male Wistar rats received cola beverage (cola group) or tap water (control group) ad libitum from the age of 23 days until tooth extraction at 42 days and euthanasia 2 and 3 weeks later. The neoformed bone volume inside the alveolar socket was estimated in semi-serial longitudinal sections using a quantitative differential point-counting method. Histological examination suggested a decrease in the osteogenic process within the tooth sockets of rats from both cola groups, which had thinner and sparser new bone trabeculae. Histometric data confirmed that alveolar bone healing was significantly delayed in cola-fed rats at three weeks after tooth extraction (ANOVA, p = 0.0006, followed by Tukey's test, p < 0.01). Although the results of studies in rats cannot be extrapolated directly to human clinical dentistry, the present study provides evidence that cola beverage consumption negatively affect maxillary bone formation.
Resumo:
This study evaluated bone response to a Ca- and P- enriched titanium (Ti) surface treated by a multiphase anodic spark deposition coating (BSP-AK). Two mongrel dogs received bilateral implantation of 3 Ti cylinders (4.1 x 12 mm) in the humerus, being either BSP-AK treated or untreated (machined - control). At 8 weeks postimplantation, bone fragments containing the implants were harvested and processed for histologic and histomorphometric analyses. Bone formation was observed in cortical area and towards the medullary canal associated to approximately 1/3 of implant extension. In most cases, in the medullary area, collagen fiber bundles were detected adjacent and oriented parallel to Ti surfaces. Such connective tissue formation exhibited focal areas of mineralized matrix lined by active osteoblasts. The mean percentages of bone-to-implant contact were 2.3 (0.0-7.2 range) for BSP-AK and 0.4 (0.0-1.3 range) for control. Although the Mann-Whitney test did not detect statistically significant differences between groups, these results indicate a trend of BSP-AK treated surfaces to support contact osteogenesis in an experimental model that produces low bone-to-implant contact values.