108 resultados para BIODIESEL FUELS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Densities and viscosities of five vegetable oils (Babassu oil, Buriti oil, Brazil nut oil, macadamia oil, and grape seed oil) and of three blends of Buriti oil and soybean oil were measured as a function of temperature and correlated by empirical equations. The estimation capability of two types of predictive methodologies was tested using the measured data. The first group of methods was based on the fatty acid composition of the oils, while the other was based on their triacylglycerol composition, as a multicomponent system. In general, the six models tested presented a good representation of the physical properties considered in this work. A simple method of calculation is also proposed to predict the dynamic viscosity of methyl and ethyl ester biodiesels, based on the fatty acid composition of the original oil. Data presented in this work and the developed model can be valuable for designing processes and equipment for the edible oil industry and for biodiesel production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel is an important new alternative fuel. The feedstock used and the process employed determines whether it fulfills the required specifications. In this work, an identification method is proposed using an electronic nose (e-nose). Four samples of biodiesel from different sources and one of petrodiesel were analyzed and well-recognized by the e-nose. Both pure biodiesel and B20 blends were studied. Furthermore, an innovative semiquantitative method is proposed on the basis of the smellprints correlated by a feed-forward artificial neural network. The results have demonstrated that the e-nose can be used to identify the biodiesel source and as a preliminary quantitative assay in place of expensive equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to produce an immobilized form of lipase from Burkholderia cepacia (lipase PS) with advantageous catalytic properties and stability to be used in the ethanolysis of different feedstocks, mainly babassu oil and tallow beef. For this purpose lipase PS was immobilized on two different non-commercial matrices, such as inorganic matrix (niobium oxide, Nb(2)O(5)) and a hybrid matrix (polysiloxane-polyvinyl alcohol, SiO(2)-PVA) by covalent binding. The properties of free and immobilized enzymes were searched and compared. The best performance regarding all the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained when the lipase was immobilized on SiO(2)-PVA. The superiority of this immobilized system was also confirmed in the transe-sterification of both feedstocks, attained higher yields and productivities. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a theoretical and experimental study of the biodiesel (ethyl ester from a waste vegetable oil) performance in a flame tube furnace. The heat transfer rate was analysed in several sections along the furnace and the performance of the biodiesel was compared to that of diesel oil. The flow of heat from the burn of each fuel in the direction of the walls of the combustion chamber was evaluated under the same fuel injection pressure. The peak of the heat transfer occurred around 0.45 m far from the fuel injection nozzle in a 0.305 m inner diameter combustion chamber. The diesel oil showed a higher heat transfer rate in most parts exposed to the flame. In the region where the body of the flame is not present, the heat transfer of biodiesel becomes higher. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GERIPA project aimed at generating renewable energy integrated with food production has led to a beneficial option for producing ethanol and electricity. Ethanol has economic, social and environmental potential. Considering just the first one, Brazil consumes 39 billion litres per year-L(D)/yr of diesel oil, 18% of it being imported. The Federal Government has a recovery programme for the soybean agribusiness aimed at soybean biodiesel (SBD) production in which a 10% addition to diesel has been proposed. This 10% involves producing 10.7 million L(SB)/d. Soybean bio-diesel production is not self-sustainable and such proposal could require an annual subsidy of up to US$1.33 billion. Soybean plantations would need about 10 to 12 times more land than is necessary for sugarcane plantations to produce the same equivalent thermal energy (ETE). Sixty-seven GERIPA projects (GP) producing 80,000 litres of ethanol per day (GP80) could be set up with the sum of US$1.33 billion; this would substitute current Brazilian biodiesel demand by 4.28%, adding the some value for each new subsidiary. Considering ETE, ethanol-GP cost would be 37% to 50% below that for a litre of SBD on account of its raw material (RM) and region. The diesel cycle`s thermal efficiency (eta(1)) yield is around 50% and that of the Otto cycle engine eta(1) is around 37%. The cost per km driven (CKD) by substituting SBD for ethanol-GP80 would thus indicate an 18% minimum and 59% maximum cost reduction for vehicle engines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the synthesis, characterization and applications of the new cerium(III) beta-diketonate Ce(hdacac)(3)(Hhdacac)(3)center dot 2H(2)O (where hdacac and Hhdacac denote, respectively, the hexadecylpentane-2,4-dionate and hexadecylpentane-2,4-dione ligands) as catalyst for the reduction of automotive emissions. Due to its amphiphilic character, this complex can be solubilized in non-polar fuels, thus generating cerium(IV) oxide particles, which efficiently catalyze the oxidation of diesel/biodiesel soot. The synthesized complex was characterized by microanalysis (C, H), thermal analysis, and infrared spectroscopy. Scanning electron microscopy, X-ray diffractometry, and specific surface area measurements attested that the complex can act as a soluble precursor of homogeneous CeO(2) spherical nanoparticles. The efficiency of this compound as catalyst for the reduction of soot emission was evaluated through static studies (comprising carbon black oxidation), which confirmed that increasing concentrations of the complex result in lower carbon black oxidation temperatures and lower activation Gibbs free energies. Dynamic studies, which embraced the combustion of diesel/biodiesel blends containing different amounts of the solubilized complex in a stationary motor, allowed a comparative evaluation of the soot emission through diffuse reflectance spectroscopy. These analyses provided very emphatic evidences of the efficiency of this new cerium complex for the control of soot emission in diesel/biodiesel motors. (c) 2009 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of fuel emissions is crucial for understanding the pathogenesis of mortality because of air pollution. The objective of this study is to assess cardiovascular and inflammatory toxicity of diesel and biodiesel particles. Mice were exposed to fuels for 1 h. Heart rate (HR), heart rate variability, and blood pressure were obtained before exposure, as well as 30 and 60 min after exposure. After 24 h, bronchoalveolar lavage, blood, and bone marrow were collected to evaluate inflammation. B100 decreased the following emission parameters: mass, black carbon, metals, CO, polycyclic aromatic hydrocarbons, and volatile organic compounds compared with B50 and diesel; root mean square of successive differences in the heart beat interval increased with diesel (p < 0.05) compared with control; low frequency increased with diesel (p < 0.01) and B100 (p < 0.05) compared with control; HR increased with B100 (p < 0.05) compared with control; mean corpuscular volume increased with B100 compared with diesel (p < 0.01), B50, and control (p < 0.001); mean corpuscular hemoglobin concentration decreased with B100 compared with B50 (p < 0.001) and control (p < 0.05); leucocytes increased with B50 compared with diesel (p < 0.05); platelets increased with B100 compared with diesel and control (p < 0.05); reticulocytes increased with B50 compared with diesel, control (p < 0.01), and B100 (p < 0.05); metamyelocytes increased with B50 and B100 compared with diesel (p < 0.05); neutrophils increased with diesel and B50 compared with control (p < 0.05); and macrophages increased with diesel (p < 0.01), B50, and B100 (p < 0.05) compared with control. Biodiesel was more toxic than diesel because it promoted cardiovascular alterations as well as pulmonary and systemic inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, a group contribution method is proposed for the estimation of viscosity of fatty compounds and biodiesel esters as a function of the temperature. The databank used for regression of the group contribution parameters (1070 values for 65 types of substances) included fatty compounds, such as fatty acids, methyl and ethyl esters and alcohols, tri- and diacylglycerols, and glycerol. The inclusion of new experimental data for fatty esters, a partial acylglycerol, and glycerol allowed for a further refinement in the performance of this methodology in comparison to a prior group contribution equation (Ceriani, R.; Goncalves, C. B.; Rabelo, J.; Caruso, M.; Cunha, A. C. C.; Cavaleri, F. W.; Batista, E. A. C.; Meirelles, A. J. A. Group contribution model for predicting viscosity of fatty compounds. J. Chem. Eng. Data 2007, 52, 965-972) for all classes of fatty compounds. Besides, the influence of small concentrations of partial acylglycerols, intermediate compounds in the transesterification reaction, in the viscosity of biodiesels was also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B3LYP/6-31 + G(d) calculations were employed to investigate the mechanism of the transesterification reaction between a model monoglyceride and the methoxide and ethoxide anions. The gas-phase results reveal that both reactions have essentially the same activation energy (5.9 kcal mol(-1)) for decomposition of the key tetrahedral intermediate. Solvent effects were included by means of both microsolvation and the polarizable continuum solvation model CPCM. Both solvent approaches reduce the activation energy, however, only the microsolvation model is able to introduce some differentiation between methanol and ethanol, yielding a lower activation energy for decomposition of the tetrahedral intermediate in the reaction with methanol (1.1 kcal mol(-1)) than for the corresponding reaction with ethanol (2.8 kcal mol(-1)), in line with experimental evidences. Analysis of the individual energy components within the CPCM approach reveals that electrostatic interactions are the main contribution to stabilization of the transition state. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As distribuidoras de combustíveis utilizam containers de aço inoxidável para o armazenamento de biocombustíveis, entretanto, na literatura, há poucos relatos sobre os aspectos corrosivos desse aço em biodiesel. O objetivo desse trabalho é estudar o comportamento corrosivo do aço inoxidável austenítico 304 na presença de biodiesel, não lavado e lavado com soluções aquosas de ácido cítrico, oxálico, acético e ascórbico 0,01 mol L-1e comparar com os resultados obtidos para o cobre (ASTM D130). Empregaram-se técnicas como: espectrometria de absorção atômica (EAA) e microscopia óptica (MO). Os resultados de EAA mostraram uma baixa taxa de corrosão para o aço inoxidável, os elementos de liga estudados foram Cr, Ni e Fe, a maior taxa observada foi para o cromo, 1,78 ppm/dia em biodiesel não lavado ou lavado. As MO do aço 304, quando comparados com as do cobre, comprovaram a baixa taxa de corrosão para o sistema aço 304/biodiesel, entretanto comprovaram que, tanto o aço 304, quanto o cobre, sofrem corrosão em amostras de biodiesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order for solar energy to serve as a primary energy source, it must be paired with energy storage on a massive scale. At this scale, solar fuels and energy storage in chemical bonds is the only practical approach. Solar fuels are produced in massive amounts by photosynthesis with the reduction of CO(2) by water to give carbohydrates but efficiencies are low. In photosystem II (PSII), the oxygen-producing site for photosynthesis, light absorption and sensitization trigger a cascade of coupled electron-proton transfer events with time scales ranging from picoseconds to microseconds. Oxidative equivalents are built up at the oxygen evolving complex (OEC) for water oxidation by the Kok cycle. A systematic approach to artificial photo synthesis is available based on a ""modular approach"" in which the separate functions of a final device are studied separately, maximized for rates and stability, and used as modules in constructing integrated devices based on molecular assemblies, nanoscale arrays, self-assembled monolayers, etc. Considerable simplification is available by adopting a ""dyesensitized photoelectrosynthesis cell"" (DSPEC) approach inspired by dye-sensitized solar cells (DSSCs). Water oxidation catalysis is a key feature, and significant progress has been made in developing a single-site solution and surface catalysts based on polypyridyl complexes of Ru. In this series, ligand variations can be used to tune redox potentials and reactivity over a wide range. Water oxidation electrocatalysis has been extended to chromophore-catalyst assemblies for both water oxidation and DSPEC applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flow system designed with solenoid micro-pumps is proposed for fast and greener spectrophotometric determination of free glycerol in biodiesel. Glycerol was extracted from samples without using organic solvents. The determination involves glycerol oxidation by periodate, yielding formaldehyde followed by formation of the colored (3,5-diacetil-1,4-dihidrolutidine) product upon reaction with acetylacetone. The coefficient of variation, sampling rate and detection limit were estimated as 1.5% (20.0 mg L(-1) glycerol, n =10), 34 h(-1), and 1.0 mg L(-1) (99.7% confidence level), respectively. A linear response was observed from 5 to 50 mg L(-1), with reagent consumption estimated as 345 mu g of KIO(4) and 15 mg of acetylacetone per determination. The procedure was successfully applied to the analysis of biodiesel samples and the results agreed with the batch reference method at the 95% confidence level. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L(-1) with a detection limit of 0.5 mg L(-1), which corresponds to 2 mg kg(-1) in biodiesel. The coefficient of variation was 0.9% (20 mg L(-1), n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L(-1). The detection limit was 1.4 mg L(-1) (2.8 mg kg(-1) in biodiesel) with a coefficient of variation of 1.4% (200 mg L(-1), n = 10). The sampling rate was ca. 35 samples h(-1) and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans.