4 resultados para BILIVERDIN
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Our objective was to evaluate the role of heme-oxygenase 1 (HO-1)/biliverdin/CO pathway in gastric defense against ethanol-induced gastric damage in mice. Mice were pre-treated with saline, hemin (HO-1 inducer), biliverdin (HO-1 product), dimanganese decacarbonyl (DMDC, CO donor) or zinc protoporphyrin IX (ZnPP IX, HO-1 antagonist). Another group received soluble guanylate cyclase (sGC) inhibitor (ODQ) 30 min before hemin, biliverdin or DMDC. After 30 min, gastric damage was induced by ethanol. After one hour, rats were sacrificed. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malonylaldehyde (MDA), glutathione (GSH) or bilirubin. HO-1 expression was determined after saline or ethanol administration by polymerase chain reaction (PCR) or immunohistochemistry. Ethanol (25% or 50%) induced gastric damage, increased MDA levels and reduced GSH in the gastric tissue. Ethanol 50% increased HO-1 mRNA transcripts, HO-1 immunoreactivity, and bilirubin concentration in gastric mucosa. Pre-treatment with hemin reduced gastric damage and MDA formation and increased GSH concentration in the gastric mucosa. ZnPP IX amplified the ethanol-induced gastric lesion, increased MDA formation and decreased GSH concentration in gastric mucosa. Biliverdin and DMDC reduced gastric damage and MDA formation and increased GSH concentration in the gastric tissue. ODQ completely abolished the DMDC protective gastric effect However, effects of hemin or biliverdin did not change with ODQ treatment. Our results suggest that HO-1/biliverdin/CO pathway plays a protective role against ethanol-induced gastric damage through mechanisms that can be dependent (CO) or independent (biliverdin) of sGC activation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The reduction of neutrophil migration to an infectious focus is associated with a high mortality in severe sepsis. Previously, we showed that heme oxygenase (HO) products downregulate neutrophil recruitment in a noninfectious inflammatory model. The present study was designed to determine the role of HO in sepsis induced by cecal ligation and puncture (CLP) model. We demonstrated that pretreatment, but not the combination of pretreatment plus posttreatment with zinc protoporphyrin IX (ZnPP IX), an HO inhibitor, prevented the reduction of CXCR2 on circulating neutrophils and the failure of intraperitoneal neutrophil migration to the site of infection. Consequently, bacterial dissemination, systemic inflammatory response, and organ injury were prevented. In addition, pretreatment with the HO inhibitor avoided hypotension and consequently increased survival. Moreover, in mice subjected to severe CLP, the pretreatment, but not the combination of pretreatment plus posttreatment with ZnPP IX, prevented the increase of plasmatic free heme observed in nontreated severe CLP. The administration of exogenous hemin to mice subjected to moderate sepsis consistently increased the mortality rate. Furthermore, hemin resulted in a reduction of neutrophil migration both in vivo and in vitro. Altogether, our results demonstrated that pretreatment with the HO inhibitor prevents the pathological findings in severe CLP. However, the combination of pretreatment plus posttreatment with ZnPP IX enhances sepsis severity because of an increase in circulating levels of heme, which is deleterious to the host tissues and also inhibits neutrophil migration.
Resumo:
Central heme oxigenase-carbon monoxide (HO-CO) pathway has been shown to play a pyretic role in the thermoregulatory response to restraint. However, the specific site in the central nervous system where CO may act modulating this response remains unclear. LC is rich not only in sGC but also in heme oxygenase (HO; the enzyme that catalyses the metabolism of heme to CO, along with biliverdin and free iron). Therefore, the possible role of the HO-CO-cGMP pathway in the restraint-induced-hypothermia by LC neurons was investigated. Body temperature dropped about 0.7 degrees C during restraint. ZnDPBG (a HO inhibitor; 5 nmol, intra-LC) prevented the hypothermic response during restraint. Conversely, induction of the HO pathway in the LC with heme-lysinate (7.6 nmol, intra-LC) intensified the hypothermic response to restraint, and this effect was prevented by pretreatment with ODQ (a sGC inhibitor; given intracerebroventricularly, 1.3 nmol). Taken together, these data suggest that CO in the LC produced by the HO pathway and acting via cGMP is implicated in thermal responses to restraint. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P. falciparum-infected erythrocytes shows that at R and S stages, a time-increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time-increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.