11 resultados para BEB electron impact ionization cross section
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The ground state thermal neutron cross section and the resonance integral for the (165)Ho(n, gamma)(166)Ho reaction in thermal and 1/E regions, respectively, of a thermal reactor neutron spectrum have been measured experimentally by activation technique. The reaction product, (166)Ho in the ground state, is gaining considerable importance as a therapeutic radionuclide and precisely measured data of the reaction are of significance from the fundamental point of view as well as for application. In this work, the spectrographically pure holmium oxide (Ho(2)O(3)) powder samples were irradiated with and without cadmium covers at the IEA-RI reactor (IPEN, Sao Paulo), Brazil. The deviation of the neutron spectrum shape from 1/E law was measured by co-irradiating Co, Zn, Zr and Au activation detectors with thermal and epithermal neutrons followed by regression and iterative procedures. The magnitudes of the discrepancies that can occur in measurements made with the ideal 1/E law considerations in the epithermal range were studied. The measured thermal neutron cross section at the Maxwellian averaged thermal energy of 0.0253 eV is 59.0 +/- 2.1 b and for the resonance integral 657 +/- 36b. The results are measured with good precision and indicated a consistency trend to resolve the discrepant status of the literature data. The results are compared with the values in main libraries such as ENDF/B-VII, JEF-2.2 and JENDL-3.2, and with other measurements in the literature.
Resumo:
In this work we propose a simple model for the total proton-air cross section, which is an improvement of the minijet model with the inclusion of a window in the p(T)-spectrum associated to the saturation physics. Our approach introduces a natural cutoff for the perturbative calculations which modifies the energy behavior of this component. The saturated component is calculated with a dipole model. The results are compared with experimental cross sections measured in cosmic ray experiments.
Resumo:
We expect to observe parton saturation in a future electron-ion collider. In this Letter we discuss this expectation in more detail considering two different models which are in good agreement with the existing experimental data on nuclear structure functions. In particular, we study the predictions of saturation effects in electron-ion collisions at high energies, using a generalization for nuclear targets of the b-CGC model, which describes the ep HERA quite well. We estimate the total. longitudinal and charm structure functions in the dipole picture and compare them with the predictions obtained using collinear factorization and modern sets of nuclear parton distributions. Our results show that inclusive observables are not very useful in the search for saturation effects. In the small x region they are very difficult to disentangle from the predictions of the collinear approaches. This happens mainly because of the large uncertainties in the determination of the nuclear parton distribution functions. On the other hand, our results indicate that the contribution of diffractive processes to the total cross section is about 20% at large A and small Q(2), allowing for a detailed study of diffractive observables. The study of diffractive processes becomes essential to observe parton Saturation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Direct measurements in the last decades have highlighted a new problem related to the lowering of the Coulomb barrier between the interacting nuclei due to the presence of the ""electron screening"" in the laboratory measurements. It was systematically observed that the presence of the electronic cloud around the interacting ions in measurements of nuclear reactions cross sections at astrophysical energies gives rise to an enhancement of the astrophysical S(E)-factor as lower and lower energies are explored [1]. Moreover, at present Such an effect is not well understood as the value of the potential for screening extracted from these measurements is higher than the tipper limit of theoretical predictions (adiabatic limit). On the other hand, the electron screening potential in laboratory measurement is different from that occurring in stellar plasmas thus the quantity of interest in astrophysics is the so-called ""bare nucleus cross section"". This quantity can only be extrapolated in direct measurements. These are the reasons that led to a considerable growth on interest in indirect measurement techniques and in particular the Trojan Horse Method (THM) [2,3]. Results concerning the bare nucleus cross sections measurements will be shown in several cases of astrophysical interest. In those cases the screening potential evaluated by means of the THM will be compared with the adiabatic limit and results arising from extrapolation in direct measurements.
Resumo:
PHENIX has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c(2) in p + p collisions at root s = 200 GeV. The contributions from light meson decays to e(+)e(-) pairs have been determined based on measurements of hadron production cross sections by PHENIX. Within the systematic uncertainty of similar to 20% they account for all e(+)e(-) pairs in the mass region below similar to 1 GeV/c(2). The e(+)e(-) pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) pb. which is consistent with QCD calculations and measurements of single leptons by PHENIX. (C) 2008 Elsevier BV. All rights reserved.
Resumo:
Nuclear (p,alpha) reactions destroying the so-called ""light-elements"" lithium, beryllium and boron have been largely studied in the past mainly because their role in understanding some astrophysical phenomena, i.e. mixing-phenomena occurring in young F-G stars [1]. Such mechanisms transport the surface material down to the region close to the nuclear destruction zone, where typical temperatures of the order of similar to 10(6) K are reached. The corresponding Gamow energy E(0)=1.22 (Z(x)(2)Z(X)(2)T(6)(2))(1/3) [2] is about similar to 10 keV if one considers the ""boron-case"" and replaces in the previous formula Z(x) = 1, Z(X) = 5 and T(6) = 5. Direct measurements of the two (11)B(p,alpha(0))(8)Be and (10)B(p,alpha)(7)Be reactions in correspondence of this energy region are difficult to perform mainly because the combined effects of Coulomb barrier penetrability and electron screening [3]. The indirect method of the Trojan Horse (THM) [4-6] allows one to extract the two-body reaction cross section of interest for astrophysics without the extrapolation-procedures. Due to the THM formalism, the extracted indirect data have to be normalized to the available direct ones at higher energies thus implying that the method is a complementary tool in solving some still open questions for both nuclear and astrophysical issues [7-12].
Resumo:
We use a new technique to investigate the systematic behavior of near barrier complete fusion, total fusion and total reaction cross sections of weakly bound systems. A dimensionless fusion excitation function is used as a benchmark to which renormalized fusion data are compared and dynamic breakup effects can be disentangled from static effects. The same reduction procedure is used to study the effect of the direct reaction mechanisms on the total reaction cross section.
Resumo:
We describe how the method of detection of delayed K x-rays produced by the electron capture decay of the residual nuclei can be a powerful tool in the investigation of the effect of the breakup process on the complete fusion (CF) cross-section of weakly bound nuclei at energies close to the Coulomb barrier. This is presently one of the most interesting subjects under investigation in the field of low-energy nuclear reactions, and the difficult experimental task of separating CF from the incomplete fusion (ICF) of one of the breakup fragments can be achieved by the x-ray spectrometry method. We present results for the fusion of the (9)Be + (144)Sm system. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Heavy-ion total reaction cross-section measurements for more than 1100 reaction cases covering 61 target nuclei in the range (6)Li-(238)U and 158 projectile nuclei from (2)H to (84)Kr (mostly exotic ones) have been analyzed in a systematic way by using an empirical, three-parameter formula that is applicable to the cases of projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities that describe the cross-section patterns. A great amount of cross-section data (87%) has been quite satisfactorily reproduced by the proposed formula; therefore, the total reaction cross-section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25% (or much less) uncertainty.
Resumo:
We have measured the elastic scattering cross-section for (8)Li + (9)Be and (8)Li + (51)V systems at 19.6 MeV and 18.5 MeV, respectively. We have also extracted total reaction cross sections from the elastic scattering analysis for several light weakly bound systems using the optical model with Woods-Saxon and double-folding-type potentials. Different reduction methods for the total reaction cross-sections have been applied to analyze and compare simultaneously all the systems.
Resumo:
Elastic scattering of (8)B and (7)Be on a (58)Ni target has been measured at energies near the Coulomb barrier. The total reaction cross sections were deduced from Optical-model fits to the experimental angular distributions. Comparison with other systems shows evidence for proton-halo effects on (8)B, as well as for neutron-halo on (6)He reactions. While the enhancement in the cross section observed for (8)B is explained in terms of projectile breakup, in the case of (6)He reactions, the particle transfer proces explains the observed enhancement.