89 resultados para B-1 CELLS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Although the origin and functions of B-1 cells are controversial, they are considered as a cellular element of innate immunity due to their ability to produce natural autoantibodies of the IgM type. These antibodies are encoded by a relatively limited repertoire of V genes, and their resulting diversity is smaller than that produced by conventional B cells. B-1 cells constitute the larger fraction of B cells in the peritoneal cavity and migrate to non-specific inflammation sites. In addition, they contribute to the production of IgA antibodies in the intestinal lamina propria. It has been demonstrated that they participate in the induction and maintenance of peripheral tolerance. Herein, the participation of B-1 cells in inducing oral tolerance is evaluated. Unexpectedly, BALB/Xid mice, the animals deficient in B-1 cells, are not tolerized to OVA but instead are responsive to oral immunization. Conversely, BALB/c mice respond to oral tolerance to this antigen. We used these biological characteristics of these animals to investigate whether BA cells are involved in the induction of oral tolerance to OVA. Results show that B-1 cells from BALB/c mice, treated orally with OVA and adoptively transferred to BALB/Xid mice were able to suppress local hypersensitivity reaction and lymphoproliferative cellular response observed in BALB/.Xid mice. These data demonstrate that B-1 cells have regulatory properties and are involved in the induction of oral tolerance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-alpha, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-alpha, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-alpha, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
In the present study the effects of bradykinin receptor antagonists were investigated in a murine model of asthma using BALB/c mice immunized with ovalbumin/alum and challenged twice with aerosolized ovalbumin. Twenty four hours later eosinophil proliferation in the bone marrow, activation (lipid bodies formation), migration to lung parenchyma and airways and the contents of the pro-angiogenic and pro-fibrotic cytokines TGF-beta and VEGF were determined. The antagonists of the constitutive B(2) (HOE 140) and inducible B(1) (R954) receptors were administered intraperitoneally 30 min before each challenge. In sensitized mice, the antigen challenge induced eosinophil proliferation in the bone marrow, their migration into the lungs and increased the number of lipid bodies in these cells. These events were reduced by treatment of the mice with the B(1) receptor antagonist. The B(2) antagonist increased the number of eosinophils and lipid bodies in the airways without affecting eosinophil counts in the other compartments. After challenge the airway levels of VEGF and TGF-beta significantly increased and the B(1) receptor antagonist caused a further increase. By immunohistochemistry techniques TGF-beta was found to be expressed in the muscular layer of small blood vessels and VEGF in bronchial epithelial cells. The B(1) receptors were expressed in the endothelial cells. These results showed that in a murine model of asthma the B(1) receptor antagonist has an inhibitory effect on eosinophils in selected compartments and increases the production of cytokines involved in tissue repair. It remains to be determined whether this effects of the B(1) antagonist would modify the progression of the allergic inflammation towards resolution or rather towards fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the present study was to evaluate sphingolipid levels (sphingosine-So and sphinganine-Sa) and to compare the Sa/So ratio in liver, serum and urine of Wistar rats after prolonged administration (21 days) of fumonisin B(1) (FB(1)). In parallel, the kinetics of sphingolipid elimination in urine was studied in animals receiving a single dose of FB(1). Prolonged exposure to FB(1) caused an increase in Sa levels in urine, serum and liver. The most marked effect on sphingolipid biosynthesis was observed in animals treated with the highest dose of FB(1). Animals receiving a single dose of FB(1) presented variations in Sa and So levels and in the Sa/So ratio.
Resumo:
The present study evaluated the effect of aflatoxin B(1) (AFB(1)) and fumonisin B(1) (FB(1)) either alone, or in association, on rat primary hepatocyte cultures. Cell viability was assessed by flow cytometry after propidium iodine intercalation. DNA fragmentation and apoptosis were assessed by agarose gel electrophoresis and acridine orange and ethidium bromide staining. At the concentrations of AFB(1) and FB(1) used, the toxins did not decrease cell viability, but did induce apoptosis in a concentration and time-dependent manner.
Resumo:
Epileptic seizures are hypersynchronous, paroxystic and abnormal neuronal discharges. Epilepsies are characterized by diverse mechanisms involving alteration of excitatory and inhibitory neurotransmission that result in hyperexcitability of the central nervous system (CNS). Enhanced neuronal excitability can also be achieved by inflammatory processes, including the participation of cytokines, prostaglandins or kinins, molecules known to be involved in either triggering or in the establishment of inflammation. Multiple inductions of audiogenic seizures in the Wistar audiogenic rat (WAR) strain are a model of temporal lobe epilepsy (TLE), due to the recruitment of limbic areas such as hippocampus and amygdata. In this study we investigated the modulation of the B-1 and B-2 kinin receptors expression levels in neonatal WARs as well as in adult WARs subjected to the TLE model. The expression levels of pro-inflammatory (IL-1 beta) and anti-inflammatory (IL-10) cytokines were also evaluated, as well as cyclooxygenase (COX-2). Our results showed that the B-1 and B-2 kinin receptors mRNAs were up-regulated about 7- and 4-fold, respectively, in the hippocampus of kindled WARs. On the other hand, the expressions of the IL-1 beta, IL-10 and COX-2 were not related to the observed increase of expression of kinin receptors. Based on those results we believe that the B, and B2 kinin receptors have a pivotal role in this model of TLE, although their participation is not related to an inflammatory process. We believe that kinin receptors in the CNS may act in seizure mechanisms by participating in a specific kininergic neurochemical pathway. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Extracellular galectin-3 participates in the control of B2 lymphocyte migration and adhesion and of their differentiation into plasma cells. Here, we analyzed the role of galectin-3 in B1-cell physiology and the balance between B1a and B1b lymphocytes in the peritoneal cavity. In galectin-3(-/-) mice, the total number of B1a lymphocytes was lower, while B1b lymphocyte number was higher as compared to wild-type mice. The differentiation of B1a cells into plasma cells was associated with their abnormal adhesion and location on the mesentery. The B220 and CD43, constitutively expressed by B1 lymphocytes, were respectively up- and downregulated in galectin-3(-/-) mice. Mononuclear cells were strongly adhered to the mesenteric membranes of both CD43(-/-) and galectin-3(-/-) mice, but in contrast to CD43(-/-) mice, the accumulation of B1 cells in peritoneal membranes in galectin-3(-/-) mice was accompanied by their functional differentiation into plasma cells. We have shown that in the absence of galectin-3, B1-cell differentiation into plasma cells is favored and the dynamic equilibrium of B1-cell populations in the peritoneum is maintained through a compensatory increase in B1b lymphocytes.
Resumo:
Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to determine the clinical, pathological and mycotoxicological effects of oral administration of fumonisin B, (FBI) in rabbits. Eighteen rabbits were randomly assigned to two experimental groups: control group, 0 mg FB(1): fumonisin group. 31.5 mg FB(1)/kg body weight, corresponding to about 630 mg FB(1)/kg diet. Fumonisin administered as a single oral dose to rabbits resulted in acute toxicity, significantly interfering with body and liver weight. Serum biochemical analysis revealed a significant increase of total protein, alkaline phosphatase (AP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), urea and creatinine in the group receiving FBI compared to control animals, a finding characterizing hepatic and renal injury in this group. Urinary protein concentrations were markedly elevated at 12,24,48 and 72 h after dosing, although visible pathological abnormalities were not observed, probably because of rapid repair of the damage. FBI was detected in feces, with a maximum concentration at 24h after administration, indicating that the enterohepatic circulation is important in rabbits. FBI concentrations found in urine were low, with peak elimination at 12 h after intoxication. The highest FBI concentrations were observed in feces compared to urine and liver, demonstrating that feces are the main routes of excretion. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A mononuclear phagocyte derived from B1b cells (B1CDP) has been described. As these cells migrate from the peritoneal cavity to non-specific inflammatory lesion sites and are highly phagocytic via Fc and mannose receptors, their microbicidal ability of these cells was investigated using the Coxiella burnetii cell infection model in vitro. In this report, the pattern of infection and C burnetii phase II survival in B1CDP phagosomes was compared with the pattern of infection of peritoneal macrophages from Xid mice (PM phi) and bone marrow derived macrophages (BMM phi). Infection was assessed by determining the large parasitophorous vacuole formation, the relative focus forming units and the quantification of DAPI (4`,6-diamino-2-phenylindole) fluorescence images acquired by confocal microscopy. When compared to macrophages, B1CDP are more permissive to the bacterial infection and less effective to kill them. Further, results suggest that IL-10 secreted by B1 cells are involved in their susceptibility to infection by C burnetti, since B1CDP from IL-10 KO mice are more competent to control C. burnetii infection than cells from wild type mice. These data contribute further to characterize B1CDP as a novel mononuclear phagocyte. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Amyloid P-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappa B (NF-kappa B), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappa B activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta 1-40 (1 or 2 mu M) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappa B (1 mu M, 12 hr); both p50/p65 and p50/p50 NF-kappa B dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. AP at 1 mu M increased the expression of inhibitory protein I kappa B, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RTPCR assays. Collectively, these findings suggest that AP activates NF-kappa B by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta. (c) 2007 Wiley-Liss, Inc.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.
Resumo:
The NK1.1 molecule participates in NK, NKT, and T-cell activation, contributing to IFN-gamma production and cytotoxicity. To characterize the early immune response to Plasmodium chabaudi AS, spleen NK1.1(+) and NK1.1(-) T cells were compared in acutely infected C57BL/6 mice. The first parasitemia peak in C57BL/6 mice correlated with increase in CD4(+)NK1.1(+)TCR-alpha beta(+), CD8(+)NK1.1(+)TCR-alpha beta(+), and CD4(+)NK1.1(-)TCR-alpha beta(+) cell numbers per spleen, where a higher increment was observed for NK1.1(+) T cells compared to NK1.1(-) T cells. According to the ability to recognize the CD1d-alpha-GalCer tetramer, CD4(+)NK1.1(+) cells in 7-day infected mice were not predominantly invariant NKT cells. At that time, nearly all NK1.1(+) T cells and around 30% of NK1.1(-) T cells showed an experienced/activated (CD44(HI)CD69(HI)CD122(HI)) cell phenotype, with high expression of Fas and PD-L1 correlating with their low proliferative capacity. Moreover, whereas IFN-gamma production by CD4(+)NK1.1(+) cells peaked at day 4 p.i., the IFN-gamma response of CD4(+)NK1.1(-) cells continued to increase at day 5 of infection. We also observed, at day 7 p.i., 2-fold higher percentages of perforin(+) cells in CD8(+)NK1.1(+) cells compared to CD8(+)NK1.1(-) cells. These results indicate that spleen NK1.1(+) and NK1.1(-) T cells respond to acute P. chabaudi malaria with different kinetics in terms of activation, proliferation, and IFN-gamma production.
Resumo:
Chronic infusion of human amyloid-beta 1-40 (A beta) in the lateral ventricle (LV) of rats is associated with memory impairment and increase of kinin receptors in cortical and hippocampal areas. Deletion of kinin B1 or B2 receptors abolished memory impairment caused by an acute single injection of A beta in the LV. As brain tissue and kinin receptors could unlikely react to acute or chronic administration of a similar quantity of A beta, we evaluated the participation of B1 or B2 receptors in memory impairment after chronic infusion of A beta. Male C57BI/6 J (wt), knock-out B1 (koB1) or B2 (koB2) mice (12 weeks of age) previously trained in a two-way shuttle-box and achieving conditioned avoidance responses (CAR, % of 50 trials) were infused with AB (550 pmol, 0.12 mu L/h, 28 days) or vehicle in the LV using a mini-osmotic pump. They were tested before the surgery (TO), 7 and 35 days after the infusion started (T7; T35). In T0, no difference was observed between CAR of the control (Cwt = 59.7 +/- 6.7%; CkoB1 = 46.7 +/- 4.0%; CkoB2 = 64.4 +/- 5.8%) and A beta (A beta wt = 66.0 +/- 3.0%; A beta koB1 = 66.8 +/- 8.2%; A beta koB2 = 58.7 +/- 5.9%) groups. In T7, A beta koB2 showed a significant decrease in CAR (41.0 +/- 8.6%) compared to the control-koB2 (72.8 +/- 2.2%, P <0.05). In T35, a significant decrease (P <0.05) was observed in A beta wt (40.7 +/- 3.3%) and A beta koB2 (41.2 +/- 10.7%) but not in the A beta koB1 (64.0 +/- 14.0%) compared to their control groups. No changes were observed in the controls at T35. We suggest that in chronic infusion of BA, B1 receptors could playan important role in the neurodegenerative process. Conversely, the premature memory impairment of koB2 suggests that it may be a protective factor. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Although the serum levels of SAA had been reported to be upregulated during inflammatory/infectious process, the role of this acute-phase protein has not been completely elucidated. In previous studies, we demonstrated that SAA stimulated the production of TNF-alpha, IL-1 beta, IL-8, NO, and ROS by neutrophils and/or mononuclear cells. Herein we demonstrate that SAA induces the expression and release of CCL20 from Cultured human blood mononuclear cells. We also focus on the signaling pathways triggered by SAA. in THP-1 cells SAA promotes phosphorylation of p38 and ERK1/2. Furthermore, the addition of SB203580 (p38 inhibitor) and PD98059 (ERK 1/2 inhibitor) inhibits the expression and release of CCL20 in mononuclear cells treated with SAA. Our results point to SAA as an important link of innate to adaptive immunity, once it might act on the recruitment of mononuclear cells. (C) 2008 Elsevier B.V. All rights reserved.