67 resultados para Avian genomes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Ratite farming of has expanded worldwide. Due to the intensive farming methods used by ratite producers, preventive medicine practices should be established. In this context, the surveillance and control of some avian pathogens are essential for the success of the ratite industry; however, little is known on the health status of ratites in Brazil. Therefore, the prevalence of antibodies against Newcastle Disease virus, Chlamydophila psittaci, Mycoplasma gallisepticum, Mycoplasma synoviae, and Salmonella Pullorum were evaluated in 100 serum samples collected from commercial ostriches and in 80 serum samples from commercial rheas reared in Brazil. All sampled animals were clinically healthy. The results showed that all ostriches and rheas were serologically negative to Newcastle disease virus, Chlamydophila psittaci, Mycoplasma gallisepticum, and Mycoplasma synoviae. Positive antibody responses against Salmonella Pullorum antigen were not detected in ostrich sera, but were detected in two rhea serum samples. These results can be considered as a warning as to the presence of Salmonella spp. in ratite farms. Therefore, the implementation of good health management and surveillance programs in ratite farms may contribute to improve not only animal production, but also public health conditions.
Resumo:
The availaibilty of chloroplast genome (cpDNA) sequences of Atropa belladonna, Nicotiana sylvestris, N tabacum, N tomentosiformis, Solanum bulbocastanum, S lycopersicum and S tuberosum, which are Solanaceae species, allowed us to analyze the organization of cpSSRs in their genic and intergenic regions In general, the number of cpSSRs in cpDNA ranged from 161 in S tuberosum to 226 in N tabacum, and the number of intergenic cpSSRs was higher than genic cpSSRs The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, penta- and hexanucleotide repeats Multiple alignments of all cpSSRs sequence from Solanaceae species made the identification of nucleotide variability possible and the phylogeny was estimated by maximum parsimony Our study showed that the plastome database can be exploited for phylogenetic analyses and biotechnological approaches
Resumo:
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
Resumo:
Although many mathematical models exist predicting the dynamics of transposable elements (TEs), there is a lack of available empirical data to validate these models and inherent assumptions. Genomes can provide a snapshot of several TE families in a single organism, and these could have their demographics inferred by coalescent analysis, allowing for the testing of theories on TE amplification dynamics. Using the available genomes of the mosquitoes Aedes aegypti and Anopheles gambiae, we indicate that such an approach is feasible. Our analysis follows four steps: (1) mining the two mosquito genomes currently available in search of TE families; (2) fitting, to selected families found in (1), a phylogeny tree under the general time-reversible (GTR) nucleotide substitution model with an uncorrelated lognormal (UCLN) relaxed clock and a nonparametric demographic model; (3) fitting a nonparametric coalescent model to the tree generated in (2); and (4) fitting parametric models motivated by ecological theories to the curve generated in (3).
Resumo:
Transposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.
Resumo:
Multiple lineages of Brazilian strains from 2007 to 2008 of avian infectious bronchitis virus (IBV) were detected in flocks of breeders, broilers, and layers. Organs samples from 20 IBV-positive flocks with variable clinical signs were submitted to the partial amplification of S gene (nucleotides 726-1071) of IBV. Fifteen of the 20 sequenced strains segregated in a unique Brazilian cluster subdivided in three subclusters (Brazil 01, 02, and 03). Whereas three strains could be classified as Massachusetts (Mass) genotype, the remaining two strains, originating from flocks with reproductive and respiratory disorders, grouped within the 4/91-793B genotype, a genotype that has not been detected before in Brazil. The potential relevance of the findings to the poultry industry is discussed because the low level of identity of the sequenced part of the S gene from 17 of 20 detected field strains and the vaccines of the Massachusetts serotype used suggest that the level of cross-protection by the Massachusetts vaccines might be low.
Resumo:
Infectious bronchitis (IB) is a highly aggressive disease for poultry in terms of symptoms and economic losses, and the control of this disease is difficult if flocks are not protected against type-specific challenges by the Avian infectious bronchitis virus (IBV). This article summarizes data presented by the author at the Workshop on Infectious Bronchitis 2009 on IB and IBV, including future developments on the field.
Resumo:
Avian metapneumovirus (AMPV) causes turkey rhinotracheitis and is associated with swollen head syndrome in chickens, which is usually accompanied by secondary infections that increase mortality. AMPVs circulating in Brazilian vaccinated and nonvaccinated commercial chicken and turkey farms were detected using a universal reverse transcriptase (RT)-PCR assay that can detect the four recognized subtypes of AMPV. The AMPV status of 228 farms with respiratory and reproductive disturbances was investigated. AMPV was detected in broiler, hen, breeder, and turkey farms from six different geographic regions of Brazil. The detected viruses were subtyped using a nested RT-PCR assay and sequence analysis of the G gene. Only subtypes A and B were detected in both vaccinated and nonvaccinated farms. AMPV-A and AMPV-B were detected in 15 and 23 farms, respectively, while both subtypes were simultaneously found in one hen farm. Both vaccine and field viruses were detected in nonvaccinated farms. In five cases, the detected subtype was different than the vaccine subtype. Field subtype B virus was detected mainly during the final years of the survey period. These viruses showed high molecular similarity (more than 96% nucleotide similarity) among themselves and formed a unique phylogenetic group, suggesting that they may have originated from a common strain. These results demonstrate the cocirculation of subtypes A and B in Brazilian commercial farms.
Resumo:
As part of an epidemiological study of infectious bronchitis virus (IBV) in Brazil, 252 samples from IBV-suspect flocks were tested and the IBV-positive samples were analysed by sequencing of hypervariable regions 1 and 2 of the S1 gene. A high prevalence of IBV variants was found and the sequence analysis of 41 samples revealed a high molecular similarity among the Brazilian isolates (from 90.2 to 100% and from 85.3 to 100% nucleotide and amino acid identity, respectively). The Brazilian isolates showed low genetic relationship with Massachusetts (63.4 to 70.7%), European (45.9 to 75.6%), American (49.3 to 76.4%) and other reference serotypes (67.5 to 78.8%). The Brazilian isolates branched into one unique cluster, separate from the reference serotypes used for infectious bronchitis control in other countries. The variants analysed in this work had a high similarity with all previously published Brazilian IBV isolates, suggesting the presence and high prevalence of a unique or predominant genotype circulating in Brazil. In addition, the virus neutralization test showed that the three Brazilian isolates analysed in the present study are antigenically related to one another but are different from the Massachusetts serotype. The present study shows that IBVs of a unique genotype can be associated with different clinical diseases, and that low genetic variation was detected in this genotype over a long period of time. The molecular characterization of the Brazilian variants isolated from 2003 to 2009 from different geographic regions of the country shows that only one predominant genotype is widespread in the Brazilian territory, denominated in this study as BR-I genotype.
Resumo:
Ratite farming of has expanded worldwide. Due to the intensive farming methods used by ratite producers, preventive medicine practices should be established. In this context, the surveillance and control of some avian pathogens are essential for the success of the ratite industry; however, little is known on the health status of ratites in Brazil. Therefore, the prevalence of antibodies against Newcastle Disease virus, Chlamydophila psittaci, Mycoplasma gallisepticum, Mycoplasma synoviae, and Salmonella Pullorum were evaluated in 100 serum samples collected from commercial ostriches and in 80 serum samples from commercial rheas reared in Brazil. All sampled animals were clinically healthy. The results showed that all ostriches and rheas were serologically negative to Newcastle disease virus, Chlamydophila psittaci, Myco plasma gallisepticum, and Myco plasma synoviae. Positive antibody responses against Salmonella Pullorum antigen were not detected in ostrich sera, but were detected in two rhea serum samples. These results can be considered as a warning as to the presence of Salmonella spp. in ratite farms. Therefore, the implementation of good health management and surveillance programs in ratite farms may contribute to improve not only animal production, but also public health conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
At present a complete mtDNA sequence has been reported for only two hymenopterans, the Old World honey bee, Apis mellifera and the sawfly Perga condei. Among the bee group, the tribe Meliponini (stingless bees) has some distinction due to its Pantropical distribution, great number of species and large importance as main pollinators in several ecosystems, including the Brazilian rain forest. However few molecular studies have been conducted on this group of bees and few sequence data from mitochondrial genomes have been described. In this project, we PCR amplified and sequenced 78% of the mitochondrial genome of the stingless bee Melipona bicolor (Apidae, Meliponini). The sequenced region contains all of the 13 mitochondrial protein-coding genes, 18 of 22 tRNA genes, and both rRNA genes (one of them was partially sequenced). We also report the genome organization (gene content and order), gene translation, genetic code, and other molecular features, such as base frequencies, codon usage, gene initiation and termination. We compare these characteristics of M. bicolor to those of the mitochondrial genome of A. mellifera and other insects. A highly biased A+T content is a typical characteristic of the A. mellifera mitochondrial genome and it was even more extreme in that of M. bicolor. Length and compositional differences between M. bicolor and A. mellifera genes were detected and the gene order was compared. Eleven tRNA gene translocations were observed between these two species. This latter finding was surprising, considering the taxonomic proximity of these two bee tribes. The tRNA Lys gene translocation was investigated within Meliponini and showed high conservation across the Pantropical range of the tribe.
Resumo:
Non-coding RNAs (ncRNAs) were recently given much higher attention due to technical advances in sequencing which expanded the characterization of transcriptomes in different organisms. ncRNAs have different lengths (22 nt to >1, 000 nt) and mechanisms of action that essentially comprise a sophisticated gene expression regulation network. Recent publication of schistosome genomes and transcriptomes has increased the description and characterization of a large number of parasite genes. Here we review the number of predicted genes and the coverage of genomic bases in face of the public ESTs dataset available, including a critical appraisal of the evidence and characterization of ncRNAs in schistosomes. We show expression data for ncRNAs in Schistosoma mansoni. We analyze three different microarray experiment datasets: (1) adult worms' large-scale expression measurements; (2) differentially expressed S. mansoni genes regulated by a human cytokine (TNF-α) in a parasite culture; and (3) a stage-specific expression of ncRNAs. All these data point to ncRNAs involved in different biological processes and physiological responses that suggest functionality of these new players in the parasite's biology. Exploring this world is a challenge for the scientists under a new molecular perspective of host-parasite interactions and parasite development.
Resumo:
A clamidiose ou ornitose é uma doença infecciosa, causada pela bactéria Chlamydophila psittaci, que acomete aves e mamíferos. Trata-se de uma das principais zoonoses de origem aviária. A transmissão ocorre principalmente por inalação de secreções contaminadas. Os sinais clínicos mais comuns incluem alterações no sistema gastrointestinal, respiratório e ocular, porém é possível encontrar aves infectadas sem sinais aparentes, dificultando a identificação da doença. O diagnóstico definitivo em aves vivas pode ser difícil, devido às características da infecção pela bactéria. Há duas principais abordagens para o diagnóstico, a primeira envolve a detecção direta da bactéria e a segunda implica a detecção de anticorpos anti-Chlamydophila sp. O tratamento é longo e envolve o uso de tetraciclinas, quinolonas ou macrolídeos, durante 21-45 dias, dependendo da espécie e do fármaco de escolha. Atualmente, o Brasil não dispõe de medidas padronizadas que visam a guiar o clínico na identificação, manejo e tratamento para a doença. Tais medidas tornam-se necessárias, bem como a pesquisa de novos métodos diagnósticos e auxiliares para a doença.
Resumo:
The biological cause of Pork Stress syndrome, which leads to PSE (pale, soft, exudative) meat, is excessive release of Ca(2+) ions, which is promoted by a genetic mutation in the ryanodine receptors (RyR) located in the sarcoplasmic reticulum of the skeletal muscle cells. We examined the relationship between the formation of PSE meat under halothane treatment and heat stress exposure in chicken alpha RYR hot spot fragments. Four test groups were compared: 1) birds slaughtered without any treatment, i.e., the control group (C); 2) birds slaughtered immediately after halothane treatment (H); 3) birds slaughtered immediately after heat stress treatment (HS), and 4) birds exposed to halothane and to heat stress (H+HS), before slaughtering. Breast muscle mRNA was extracted, amplified by RT-PCR, and sequenced. PSE meat was evaluated using color determination (L*value). The most common alteration was deletion of a single nucleotide, which generated a premature stop codon, resulting in the production of truncated proteins. The highest incidence of nonsense transcripts came with exposure to halothane; 80% of these abnormal transcripts were detected in H and H+HS groups. As a consequence, the incidence of abnormal meat was highest in the H+HS group (66%). In HS, H, and C groups, PSE meat developed in 60, 50, and 33% of the samples, respectively. Thus, halothane apparently modulates alpha RYR gene expression in this region, and synergically with exposure to heat stress, causes Avian Stress syndrome, resulting in PSE meat in broiler chickens.