4 resultados para Automatic tagging of music
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
One of the key issues in e-learning environments is the possibility of creating and evaluating exercises. However, the lack of tools supporting the authoring and automatic checking of exercises for specifics topics (e.g., geometry) drastically reduces advantages in the use of e-learning environments on a larger scale, as usually happens in Brazil. This paper describes an algorithm, and a tool based on it, designed for the authoring and automatic checking of geometry exercises. The algorithm dynamically compares the distances between the geometric objects of the student`s solution and the template`s solution, provided by the author of the exercise. Each solution is a geometric construction which is considered a function receiving geometric objects (input) and returning other geometric objects (output). Thus, for a given problem, if we know one function (construction) that solves the problem, we can compare it to any other function to check whether they are equivalent or not. Two functions are equivalent if, and only if, they have the same output when the same input is applied. If the student`s solution is equivalent to the template`s solution, then we consider the student`s solution as a correct solution. Our software utility provides both authoring and checking tools to work directly on the Internet, together with learning management systems. These tools are implemented using the dynamic geometry software, iGeom, which has been used in a geometry course since 2004 and has a successful track record in the classroom. Empowered with these new features, iGeom simplifies teachers` tasks, solves non-trivial problems in student solutions and helps to increase student motivation by providing feedback in real time. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Due to idiosyncrasies in their syntax, semantics or frequency, Multiword Expressions (MWEs) have received special attention from the NLP community, as the methods and techniques developed for the treatment of simplex words are not necessarily suitable for them. This is certainly the case for the automatic acquisition of MWEs from corpora. A lot of effort has been directed to the task of automatically identifying them, with considerable success. In this paper, we propose an approach for the identification of MWEs in a multilingual context, as a by-product of a word alignment process, that not only deals with the identification of possible MWE candidates, but also associates some multiword expressions with semantics. The results obtained indicate the feasibility and low costs in terms of tools and resources demanded by this approach, which could, for example, facilitate and speed up lexicographic work.
Resumo:
The most significant radiation field nonuniformity is the well-known Heel effect. This nonuniform beam effect has a negative influence on the results of computer-aided diagnosis of mammograms, which is frequently used for early cancer detection. This paper presents a method to correct all pixels in the mammography image according to the excess or lack on radiation to which these have been submitted as a result of the this effect. The current simulation method calculates the intensities at all points of the image plane. In the simulated image, the percentage of radiation received by all the points takes the center of the field as reference. In the digitized mammography, the percentages of the optical density of all the pixels of the analyzed image are also calculated. The Heel effect causes a Gaussian distribution around the anode-cathode axis and a logarithmic distribution parallel to this axis. Those characteristic distributions are used to determine the center of the radiation field as well as the cathode-anode axis, allowing for the automatic determination of the correlation between these two sets of data. The measurements obtained with our proposed method differs on average by 2.49 mm in the direction perpendicular to the anode-cathode axis and 2.02 mm parallel to the anode-cathode axis of commercial equipment. The method eliminates around 94% of the Heel effect in the radiological image and the objects will reflect their x-ray absorption. To evaluate this method, experimental data was taken from known objects, but could also be done with clinical and digital images.