6 resultados para Attributed Social Networks, Community Detection

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infects 170 million people worldwide, and is a major public health problem in Brazil, where over 1% of the population may be infected and where multiple viral genotypes co-circulate. Chronically infected individuals are both the source of transmission to others and are at risk for HCV-related diseases, such as liver cancer and cirrhosis. Before the adoption of anti-HCV control measures in blood banks, this virus was mainly transmitted via blood transfusion. Today, needle sharing among injecting drug users is the most common form of HCV transmission. Of particular importance is that HCV prevalence is growing in non-risk groups. Since there is no vaccine against HCV, it is important to determine the factors that control viral transmission in order to develop more efficient control measures. However, despite the health costs associated with HCV, the factors that determine the spread of virus at the epidemiological scale are often poorly understood. Here, we sequenced partial NS5b gene sequences sampled from blood samples collected from 591 patients in Sao Paulo state, Brazil. We show that different viral genotypes entered Sao Paulo at different times, grew at different rates, and are associated with different age groups and risk behaviors. In particular, subtype 1b is older and grew more slowly than subtypes 1a and 3a, and is associated with multiple age classes. In contrast, subtypes 1a and 3b are associated with younger people infected more recently, possibly with higher rates of sexual transmission. The transmission dynamics of HCV in Sao Paulo therefore vary by subtype and are determined by a combination of age, risk exposure and underlying social network. We conclude that social factors may play a key role in determining the rate and pattern of HCV spread, and should influence future intervention policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Analisar como pessoas com doenças mentais vivenciam suas necessidades especiais e interagem com a comunidade local nos espaços públicos urbanos. METODOLOGIA: Pesquisa realizada na cidade de Passo Fundo, Rio Grande do Sul, utilizando como abordagem teórico-metodológica a etnografia. A partir de estudo de um sujeito, buscou-se compreender o que caracteriza as pessoas como doentes mentais e como as adversidades decorrentes de seus quadros mentais não as impossibilitam de construir circuitos, trajetos e redes sociais no espaço urbano. RESULTADOS E CONCLUSÕES: O estudo identificou os processos de subjetivação dos sujeitos no espaço da cidade. Uma vez que os serviços de saúde reconhecem esses sujeitos, podem criar formas de intervenção mais adequadas às suas necessidades especiais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Microarray techniques have become an important tool to the investigation of genetic relationships and the assignment of different phenotypes. Since microarrays are still very expensive, most of the experiments are performed with small samples. This paper introduces a method to quantify dependency between data series composed of few sample points. The method is used to construct gene co-expression subnetworks of highly significant edges. Results: The results shown here are for an adapted subset of a Saccharomyces cerevisiae gene expression data set with low temporal resolution and poor statistics. The method reveals common transcription factors with a high confidence level and allows the construction of subnetworks with high biological relevance that reveals characteristic features of the processes driving the organism adaptations to specific environmental conditions. Conclusion: Our method allows a reliable and sophisticated analysis of microarray data even under severe constraints. The utilization of systems biology improves the biologists ability to elucidate the mechanisms underlying celular processes and to formulate new hypotheses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimating the sizes of hard-to-count populations is a challenging and important problem that occurs frequently in social science, public health, and public policy. This problem is particularly pressing in HIV/AIDS research because estimates of the sizes of the most at-risk populations-illicit drug users, men who have sex with men, and sex workers-are needed for designing, evaluating, and funding programs to curb the spread of the disease. A promising new approach in this area is the network scale-up method, which uses information about the personal networks of respondents to make population size estimates. However, if the target population has low social visibility, as is likely to be the case in HIV/AIDS research, scale-up estimates will be too low. In this paper we develop a game-like activity that we call the game of contacts in order to estimate the social visibility of groups, and report results from a study of heavy drug users in Curitiba, Brazil (n = 294). The game produced estimates of social visibility that were consistent with qualitative expectations but of surprising magnitude. Further, a number of checks suggest that the data are high-quality. While motivated by the specific problem of population size estimation, our method could be used by researchers more broadly and adds to long-standing efforts to combine the richness of social network analysis with the power and scale of sample surveys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of families of children with type 1 diabetes mellitus, emphasizing the identification of social supports and networks to strengthen interventions aimed at health promotion. The approach selected was a qualitative research, using a case study design. Four families of children with diabetes type 1 were studied, totalling seven participants. Data were collected between April and June 2007, through in-depth interviews and the construction of a genogram and an ecomap. The results presented the families` characterization and testimonies grouped in the following categories: social support, social networks and family roles. To promote care in practice, there is a need to identify the characteristics of each family and resources available that provide better living conditions. We concluded that identifying supports and social networks allows for more personalized care delivery to each family with a view to health promotion.