172 resultados para Astrophysics.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Difficulties in cross-section measurements at very low energies, when charged particles are involved, led to the development of some indirect methods. The Trojan horse method (THM) allows us to bypass the Coulomb effects and has been successfully applied to several reactions of astrophysical interest. A brief review of the THM applications is reported together with some of the most recent results.
Resumo:
We studied, for the first time, the near-infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from a homogeneous Fabry-Perot sample of galaxies [the Gassendi HAlpha survey of SPirals (GHASP) survey]. The main advantage of GHASP over other samples is that the maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colours, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48 +/- 0.38 and 3.64 +/- 0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratio recipes were used. We also point out, for the first time, that the rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than the flat ones or the symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K) similar to -20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well-defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.
Resumo:
We have developed a spectrum synthesis method for modeling the ultraviolet (UV) emission from the accretion disk from cataclysmic variables (CVs). The disk is separated into concentric rings, with an internal structure from the Wade & Hubeny disk-atmosphere models. For each ring, a wind atmosphere is calculated in the comoving frame with a vertical velocity structure obtained from a solution of the Euler equation. Using simple assumptions, regarding rotation and the wind streamlines, these one-dimensional models are combined into a single 2.5-dimensional model for which we compute synthetic spectra. We find that the resulting line and continuum behavior as a function of the orbital inclination is consistent with the observations, and verify that the accretion rate affects the wind temperature, leading to corresponding trends in the intensity of UV lines. In general, we also find that the primary mass has a strong effect on the P Cygni absorption profiles, the synthetic emission line profiles are strongly sensitive to the wind temperature structure, and an increase in the mass-loss rate enhances the resonance line intensities. Synthetic spectra were compared with UV data for two high orbital inclination nova-like CVs-RW Tri and V347 Pup. We needed to include disk regions with arbitrary enhanced mass loss to reproduce reasonably well widths and line profiles. This fact and a lack of flux in some high ionization lines may be the signature of the presence of density-enhanced regions in the wind, or alternatively, may result from inadequacies in some of our simplifying assumptions.
Resumo:
The classification of galaxies as star forming or active is generally done in the ([O III]/H beta, [N II]/H alpha) plane. The Sloan Digital Sky Survey (SDSS) has revealed that, in this plane, the distribution of galaxies looks like the two wings of a seagull. Galaxies in the right wing are referred to as Seyfert/LINERs, leading to the idea that non-stellar activity in galaxies is a very common phenomenon. Here, we argue that a large fraction of the systems in the right wing could actually be galaxies which stopped forming stars. The ionization in these `retired` galaxies would be produced by hot post-asymptotic giant branch stars and white dwarfs. Our argumentation is based on a stellar population analysis of the galaxies via our STARLIGHT code and on photoionization models using the Lyman continuum radiation predicted for this population. The proportion of LINER galaxies that can be explained in such a way is, however, uncertain. We further show how observational selection effects account for the shape of the right wing. Our study suggests that nuclear activity may not be as common as thought. If retired galaxies do explain a large part of the seagull`s right wing, some of the work concerning nuclear activity in galaxies, as inferred from SDSS data, will have to be revised.
Resumo:
We report the discovery of the first known symbiotic star in IC10, a starburst galaxy belonging to the Local Group, at a distance of similar to 750 kpc. The symbiotic star was identified during a survey of emission-line objects. It shines at V = 24.62 +/- 0.04, V - R(C) = 2.77 +/- 0.05 and R(C) - I(C) = 2.39 +/- 0.02, and suffers from E(B-V) = 0.85 +/- 0.05 reddening. The spectrum of the cool component well matches that of solar neighbourhood M8III giants. The observed emission lines belong to Balmer series, [S II], [N II] and [O III]. They suggest a low electronic density, negligible optical depth effects and 35 000 < T(eff) < 90 000 K for the ionizing source. The spectrum of the new symbiotic star in IC10 is an almost perfect copy of that of Hen 2-147, a well-known Galactic symbiotic star and Mira.
Resumo:
The Gaia Space Mission [Mignard, F., 2005. The three-dimensional universe with Gaia. ESA/SP-576; Perryman, M., 2005. The three-dimensional universe with Gaia. ESA/SP-576] will observe several transient events as supernovae, microlensing, gamma ray bursts and new Solar System objects. The satellite, due to its scanning law, will detect these events but will not be able to monitor them. So, to take these events into consideration and to perform further studies it is necessary to follow them with Earth-based observations. These observations could be efficiently done by a ground-based network of well-equipped telescopes scattered in both hemispheres. Here we focus our attention at the new Solar System objects to be discovered and observed by the Gaia satellite [Mignard, F., 2002. Observations of Solar System objects by Gaia I. Detection of NEOS. Astron. Astrophys. 393, 727] mainly asteroids, NEOs and comets. A dedicated ground-based network of telescopes as proposed by Thuillot [2005. The three-dimensional universe with Gaia. ESA/SP-576] will allow to monitor those events, to avoid losing them and to perform a quick characterization of some physical properties which will be important for the identification of these objects in further measurements by Gaia. We present in this paper, the beginning of the organization of a Latin-American ground-based network of telescopes and observers joining several institutions in Argentina, Bolivia, Brazil and other Latin-American countries aiming to contribute to the follow-up of Gaia science alerts for Solar System objects. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The transition redshift (deceleration/acceleration) is discussed by expanding the deceleration parameter to first order around its present value. A detailed study is carried out by considering two different parametrizations, q = q(0) + q(1)z and q = q(0) + q(1)z(1 + z)(-1), and the associated free parameters (q(0), q(1)) are constrained by three different supernovae (SNe) samples. A previous analysis by Riess et al. using the first expansion is slightly improved and confirmed in light of their recent data (Gold07 sample). However, by fitting the model with the Supernova Legacy Survey (SNLS) type Ia sample, we find that the best fit to the redshift transition is z(t) = 0.61, instead of z(t) = 0.46 as derived by the High-z Supernovae Search (HZSNS) team. This result based in the SNLS sample is also in good agreement with the sample of Davis et al., z(t) = 0.60(-0.11)(+0.28) (1 sigma). Such results are in line with some independent analyses and accommodate more easily the concordance flat model (Lambda CDM). For both parametrizations, the three SNe Ia samples considered favour recent acceleration and past deceleration with a high degree of statistical confidence level. All the kinematic results presented here depend neither on the validity of general relativity nor on the matter-energy contents of the Universe.
Resumo:
We derive fundamental parameters of the embedded cluster DBSB 48 in the southern nebula Hoffleit 18 and the very young open cluster Trumpler 14, by means of deep JHK(s) infrared photometry. We build colour-magnitude and colour-colour diagrams to derive reddening and age, based on main sequence and pre-main sequence distributions. Radial stellar density profiles are used to study cluster structure and guide photometric diagram extractions. Field-star decontamination is applied to uncover the intrinsic cluster sequences in the diagrams. Ages are inferred from K-excess fractions. A prominent pre-main sequence population is present in DBSB 48, and the K-excess fraction f(K) = 55 +/- 6% gives an age of 1.1 +/- 0.5 Myr. A mean reddening of A(Ks) = 0.9 +/- 0.03 was found, corresponding to A(v) = 8.2 +/- 0.3. The cluster CMD is consistent with the far kinematic distance of 5 kpc for Hoffleit 18. For Trumpler 14 we derived similar parameters as in previous studies in the optical, in particular an age of 1.7 +/- 0.7 Myr. The fraction of stars with infrared excess in Trumpler 14 is f(K) = 28 +/- 4%. Despite the young ages, both clusters are described by a King profile with core radii R-core = 0.46 +/- 0.05 pc and R-core = 0.35 +/- 0.04 pc, respectively, for DBSB 48 and Trumpler 14. Such cores are smaller than those of typical open clusters. Small cores are probably related to the cluster formation and/or parent molecular cloud fragmentation. In DBSB 48, the magnitude extent of the upper main sequence is Delta K-s approximate to 2 mag, while in Trumpler 14 it is Delta K-s approximate to 5 mag, consistent with the estimated ages. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We discuss the basic hydrodynamics that determines the density structure of the disks around hot stars. Observational evidence supports the idea that these disks are Keplerian (rotationally supported) gaseous disks. A popular scenario in the literature, which naturally leads to the formation of Keplerian disks, is the viscous decretion model. According to this scenario, the disks are hydrostatically supported in the vertical direction, while the radial structure is governed by the viscous transport. This suggests that the temperature is one primary factor that governs the disk density structure. In a previous study we demonstrated, using three-dimensional non-LTE Monte Carlo simulations, that viscous Keplerian disks can be highly nonisothermal. In this paper we build on our previous work and solve the full problem of the steady state nonisothermal viscous diffusion and vertical hydrostatic equilibrium. We find that the self-consistent solution departs significantly from the analytic isothermal density, with potentially large effects on the emergent spectrum. This implies that nonisothermal disk models must be used for a detailed modeling of Be star disks.
Resumo:
This continuing study of intragroup light in compact groups of galaxies aims to establish new constraints to models of formation and evolution of galaxy groups, specially of compact groups, which are a key part in the evolution of larger structures, such as clusters. In this paper we present three additional groups (HCG 15, 35 and 51) using deep wide-field B- and R-band images observed with the LAICA camera at the 3.5-m telescope at the Calar Alto observatory (CAHA). This instrument provides us with very stable flat-fielding, a mandatory condition for reliably measuring intragroup diffuse light. The images were analysed with the OV_WAV package, a wavelet technique that allows us to uncover the intragroup component in an unprecedented way. We have detected that 19, 15 and 26 per cent of the total light of HCG 15, 35 and 51, respectively, are in the diffuse component, with colours that are compatible with old stellar populations and with mean surface brightness that can be its low as 28.4 B mag arcsec(-2). Dynamical masses, crossing times and mass-to-light ratios were recalculated using the new group parameters. Also tidal features were analysed using the wavelet technique.
Resumo:
We have analyzed XMM-Newton archive data for five clusters of galaxies (redshifts 0.223-0.313) covering a wide range of dynamical states, from relaxed objects to clusters undergoing several mergers. We present here temperature maps of the X-ray gas together with a preliminary interpretation of the formation history of these clusters. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.
MAGNETOHYDRODYNAMIC SIMULATIONS OF RECONNECTION AND PARTICLE ACCELERATION: THREE-DIMENSIONAL EFFECTS
Resumo:
Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.
Resumo:
The ejection of the gas out of the disc in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper, we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence on the redistribution of the freshly delivered metals over the disc. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernova explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to similar to 2 kpc which than collapses back mostly in the form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disc remaining within a radial distance Delta R = 0.5 kpc from the place where the fountain originated. This localized circulation of disc gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.
Resumo:
The study of old open clusters outside the solar circle can bring constraints on formation scenarios of the outer disc. In particular, accretion of dwarf galaxies has been proposed as a likely mechanism in the area. We use BVI photometry for determining fundamental parameters of the faint open cluster ESO 92-SC05. Colour-magnitude diagrams are compared with Padova isochrones, in order to derive age, reddening and distance. We derive a reddening E(B - V) = 0.17, and an old age of similar to 6.0 Gyr. It is one of the rare open clusters known to be older than 5 Gyr. A metallicity of Z similar to 0.004 or [M/H] similar to -0.7 is found. The rather low metallicity suggests that this cluster might be the result of an accretion episode of a dwarf galaxy.