11 resultados para Ast-87061
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Aeromonas species are widely distributed in aquatic environments and recent studies include the genus in the emergent pathogens group because of its frequent association with local and systemic infections in immunocompetent humans. Aiming to search for virulence genes in environmental strains of Aeromonas hydrophila and Aeromonas jandaei, we designed specific primers to detect act/hly A/aer complex and alt genes. Primers described elsewhere were used to detect ast. Eighty-seven strains previously identified using phenotypic and genotypic tests as A. hydrophila (41) and A. jandaei (46) were analysed for the presence of the virulence genes using PCR. DNA fragments of expected size were purified and directly sequenced. Among the 41 strains of A. hydrophila 70.7% (29), 97.6% (40) and 26.8% (11) possessed act/hly A/aer complex, ast and alt genes, respectively. Among the 46 strains of A. jandaei, 4.4% (2), 0% (0) and 32.6% (15) were positive for act/hly A/aer complex, ast and alt genes, respectively. Sequencing allowed for the confirmation of amplified products using BLAST. The present work proposes a specific and rapid diagnostic method to detect the main virulence determinants of Aeromonas, a genus potentially pathogenic to humans.
MAGNETOHYDRODYNAMIC SIMULATIONS OF RECONNECTION AND PARTICLE ACCELERATION: THREE-DIMENSIONAL EFFECTS
Resumo:
Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.
Resumo:
Our numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian and Vishniac (1999) model of fast reconnection. We trace particles within our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration. We discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We present the discovery of a wide (67 AU) substellar companion to the nearby (21 pc) young solar-metallicity M1 dwarf CD-35 2722, a member of the approximate to 100 Myr AB Doradus association. Two epochs of astrometry from the NICI Planet-Finding Campaign confirm that CD-35 2722 B is physically associated with the primary star. Near-IR spectra indicate a spectral type of L4 +/- 1 with a moderately low surface gravity, making it one of the coolest young companions found to date. The absorption lines and near-IR continuum shape of CD-35 2722 B agree especially well the dusty field L4.5 dwarf 2MASS J22244381-0158521, while the near-IR colors and absolute magnitudes match those of the 5 Myr old L4 planetary-mass companion, 1RXS J160929.1-210524 b. Overall, CD-35 2722 B appears to be an intermediate-age benchmark for L dwarfs, with a less peaked H-band continuum than the youngest objects and near-IR absorption lines comparable to field objects. We fit Ames-Dusty model atmospheres to the near-IR spectra and find T(eff) = 1700-1900 K and log(g) = 4.5 +/- 0.5. The spectra also show that the radial velocities of components A and B agree to within +/- 10 km s(-1), further confirming their physical association. Using the age and bolometric luminosity of CD-35 2722 B, we derive a mass of 31 +/- 8 M(Jup) from the Lyon/Dusty evolutionary models. Altogether, young late-M to mid-L type companions appear to be overluminous for their near-IR spectral type compared with field objects, in contrast to the underluminosity of young late-L and early-T dwarfs.
Resumo:
FS CMa type stars are a recently described group of objects with the B[e] phenomenon which exhibits strong emission-line spectra and strong IR excesses. In this paper, we report the first attempt for a detailed modeling of IRAS 00470+6429, for which we have the best set of observations. Our modeling is based on two key assumptions: the star has a main-sequence luminosity for its spectral type (B2) and the circumstellar (CS) envelope is bimodal, composed of a slowly outflowing disklike wind and a fast polar wind. Both outflows are assumed to be purely radial. We adopt a novel approach to describe the dust formation site in the wind that employs timescale arguments for grain condensation and a self-consistent solution for the dust destruction surface. With the above assumptions we were able to satisfactorily reproduce many observational properties of IRAS 00470+6429, including the Hi line profiles and the overall shape of the spectral energy distribution. Our adopted recipe for dust formation proved successful in reproducing the correct amount of dust formed in the CS envelope. Possible shortcomings of our model, as well as suggestions for future improvements, are discussed.
Resumo:
We present preliminary results for the estimation of barium [Ba/Fe], and strontium [Sr/Fe], abundances ratios using medium-resolution spectra (1-2 angstrom). We established a calibration between the abundance ratios and line indices for Ba and Sr, using multiple regression and artificial neural network techniques. A comparison between the two techniques (showing the advantage of the latter), as well as a discussion of future work, is presented.
Resumo:
We present a comprehensive analysis of the spatial, kinematic and chemical properties of stars and globular clusters (GCs) in the `ordinary` elliptical galaxy NGC 4494 using data from the Keck and Subaru telescopes. We derive galaxy surface brightness and colour profiles out to large galactocentric radii. We compare the latter to metallicities derived using the near-infrared Calcium Triplet. We obtain stellar kinematics out to similar to 3.5 effective radii. The latter appear flattened or elongated beyond similar to 1.8 effective radii in contrast to the relatively round photometric isophotes. In fact, NGC 4494 may be a flattened galaxy, possibly even an S0, seen at an inclination of similar to 45 degrees. We publish a catalogue of 431 GC candidates brighter than i(0) = 24 based on the photometry, of which 109 are confirmed spectroscopically and 54 have measured spectroscopic metallicities. We also report the discovery of three spectroscopically confirmed ultra-compact dwarfs around NGC 4494 with measured metallicities of -0.4 less than or similar to [Fe/H] less than or similar to -0.3. Based on their properties, we conclude that they are simply bright GCs. The metal-poor GCs are found to be rotating with similar amplitude as the galaxy stars, while the metal-rich GCs show marginal rotation. We supplement our analysis with available literature data and results. Using model predictions of galaxy formation, and a suite of merger simulations, we find that many of the observational properties of NGC 4494 may be explained by formation in a relatively recent gas-rich major merger. Complete studies of individual galaxies incorporating a range of observational avenues and methods such as the one presented here will be an invaluable tool for constraining the fine details of galaxy formation models, especially at large galactocentric radii.
Resumo:
We describe a new spectroscopic technique for measuring radial metallicity gradients out to large galactocentric radii. We use the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck telescope and the galaxy spectrum extraction technique of Proctor et al. We also make use of the metallicity sensitive near-infrared Calcium ii triplet (CaT) features together with single stellar population models to obtain metallicities. Our technique is applied as a pilot study to a sample of three relatively nearby (< 30 Mpc) intermediate-mass to massive early-type galaxies. Results are compared with previous literature inner region values and generally show good agreement. We also include a comparison with profiles from dissipational disc-disc major merger simulations. Based on our new extended metallicity gradients combined with other observational evidence and theoretical predictions, we discuss possible formation scenarios for the galaxies in our sample. The limitations of our new technique are also discussed.
Resumo:
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h(3) and h(4)) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to similar to three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.
Resumo:
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho & Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz-Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Resumo:
The aim of this study was to determine the clinical, pathological and mycotoxicological effects of oral administration of fumonisin B, (FBI) in rabbits. Eighteen rabbits were randomly assigned to two experimental groups: control group, 0 mg FB(1): fumonisin group. 31.5 mg FB(1)/kg body weight, corresponding to about 630 mg FB(1)/kg diet. Fumonisin administered as a single oral dose to rabbits resulted in acute toxicity, significantly interfering with body and liver weight. Serum biochemical analysis revealed a significant increase of total protein, alkaline phosphatase (AP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), urea and creatinine in the group receiving FBI compared to control animals, a finding characterizing hepatic and renal injury in this group. Urinary protein concentrations were markedly elevated at 12,24,48 and 72 h after dosing, although visible pathological abnormalities were not observed, probably because of rapid repair of the damage. FBI was detected in feces, with a maximum concentration at 24h after administration, indicating that the enterohepatic circulation is important in rabbits. FBI concentrations found in urine were low, with peak elimination at 12 h after intoxication. The highest FBI concentrations were observed in feces compared to urine and liver, demonstrating that feces are the main routes of excretion. (C) 2009 Elsevier Ireland Ltd. All rights reserved.