6 resultados para Artillery drill and tactics.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In arthropods, most cases of morphological dimorphism within males are the result of a conditional evolutionarily stable strategy (ESS) with status-dependent tactics. In conditionally male-dimorphic species, the status` distributions of male morphs often overlap, and the environmentally cued threshold model (ET) states that the degree of overlap depends on the genetic variation in the distribution of the switchpoints that determine which morph is expressed in each value of status. Here we describe male dimorphism and alternative mating behaviors in the harvestman Serracutisoma proximum. Majors express elongated second legs and use them in territorial fights; minors possess short second legs and do not fight, but rather sneak into majors` territories and copulate with egg-guarding females. The static allometry of second legs reveals that major phenotype expression depends on body size (status), and that the switchpoint underlying the dimorphism presents a large amount of genetic variation in the population, which probably results from weak selective pressure on this trait. With a mark-recapture study, we show that major phenotype expression does not result in survival costs, which is consistent with our hypothesis that there is weak selection on the switchpoint. Finally, we demonstrate that switchpoint is independent of status distribution. In conclusion, our data support the ET model prediction that the genetic correlation between status and switchpoint is low, allowing the status distribution to evolve or to fluctuate seasonally, without any effect on the position of the mean switchpoint.
Resumo:
There is a gap in terms of the supposed survival differences recorded in the field according to individual condition. This is partly due to our inability to assess survival in the wild. Here we applied modern statistical techniques to field-gathered data in two damselfly species whose males practice alternative reproductive tactics (ARTs) and whose indicators of condition in both sexes are known. In Paraphlebia zoe, there are two ART: a larger black-winged (BW) male which defends mating territories and a smaller hyaline-winged (HW) male that usually acts as a satellite. In this species, condition in both morphs is correlated with body size. In Calopteryx haemorrhoidalis, males follow tactics according to their condition with males in better condition practicing a territorial ART. In addition, in this species, condition correlates positively with wing pigmentation in both sexes. Our prediction for both species was that males practicing the territorial tactic will survive less longer than males using a nonterritorial tactic, and larger or more pigmented animals will survive for longer. In P. zoe, BW males survived less than females but did not differ from HW males, and not necessarily larger individuals survived for longer. In fact, size affected survival but only when group identity was analysed, showing a positive relationship in females and a slightly negative relationship in both male morphs. For C. haemorrhoidalis, survival was larger for more pigmented males and females, but size was not a good survival predictor. Our results partially confirm assumptions based on the maintenance of ARTs. Our results also indicate that female pigmentation, correlates with a fitness component - survival - as proposed by recent sexual selection ideas applied to females.
Resumo:
The information concerning the molecular events taking place in onlay bone grafts are still incipient. The objective of the present study is to correlate the effects of perforation of resident bone bed on (1) the timing of onlay autogenous graft revascularization; (2) the maintenance of volume/density of the graft (assessed through tomography); and (3) the occurrence of bone remodeling proteins (using immunohistochemistry technique) delivered in the graft. Thirty-six New Zealand White rabbits were subjected to iliac crest onlay bone grafting on both sides of the mandible. The bone bed was drill-perforated on one side aiming at accelerating revascularization, whereas on the other side it was kept intact. After grafts fixation and flaps suture all animals were submitted to tomography on both mandible sites. Six animals were sacrificed, respectively, at 3, 5, 7, 10, 20 and 60 days after surgery. A second tomography was taken just before sacrifice. Histological slides were prepared from each grafted site for both immunohistochemistry analysis [osteopontin, osteocalcin, type I collagen and vascular endothelial growth factor (VEGF) anti-bodies] and histometric analysis. The values on bone volume measured on tomography showed no statistic significance (P >= 0.05) between perforated and intact sites. Grafts placed on perforated beds showed higher bone density values compared with non-perforated ones at 3 days (P <= 0.05). This correlation was inverted at 60 days postoperatively. The findings from VEGF labeling revealed a tendency for earlier revascularization in the perforated group. The early revascularization of bone grafts accelerated the bone remodeling process (osteocalcin, type I collagen and osteopontin) that led to an increased bone deposition at 10 days. The extended osteoblast differentiation process at intermediate stages in the perforated group cooperated for a denser bone at 60 days.
Resumo:
Intense male-male competition for females may drive the evolution of male morphological dimorphism, which is frequently associated with alternative mating tactics. Using modern techniques for the detection of discontinuous allometries, we describe male dimorphism in the Neotropical harvestman Longiperna concolor, the males of which use their elongated, sexually dimorphic legs IV in fights for the possession of territories where females lay eggs. We also tested three predictions related to the existence of alternative mating tactics: (1) if individuals with relatively longer legs IV (majors) are more likely to monopolize access to reproductive resources, they are expected to remain close to stable groups of females more than individuals with relatively shorter legs IV (minors) do; (2) if minors achieve fertilization by moving between territories, they are expected to be less faithful to specific sites; and (3) majors should be observed in aggressive interactions more often. We individually marked all the individuals from a population of Longiperna during the reproductive season and recorded the location of each sighting for males and females as well as the identity of males involved in fights. Majors were more likely to have harems, and large majors were even more likely to do so. Majors were more philopatric and all males involved in fights belonged to this morph. These results strongly suggest that the mating tactic of the majors is based on resource defense whereas that of the minors probably relies on sneaking into the territories of the majors and furtively copulating with females.
Resumo:
The sexual system of the symbiotic shrimp Thor amboinensis is described, along with observations on sex ratio and host-use pattern of different populations. We used a comprehensive approach to elucidate the previously unknown sexual system of this shrimp. Dissections, scanning electron microscopy, size-frequency distribution analysis, and laboratory observations demonstrated that T amboinensis is a protandric hermaphrodite: shrimp first mature as males and change into females later in life. Thor amboinensis inhabited the large and structurally heterogeneous sea anemone Stichoclactyla helianthus in large groups (up to 11 individuals) more frequently than expected by chance alone. Groups exhibited no particularly complex social structure and showed male-biased sex ratios more frequently than expected by chance alone. The adult sex ratio was male-biased in the four separate populations studied, one of them being thousands of kilometers apart from the others. This study supports predictions central to theories of resource monopolization and sex allocation. Dissections demonstrated that unusually large males were parasitized by an undescribed species of isopod (family Entoniscidae). Infestation rates were similarly low in both sexes (approximate to 11%-12%). The available information suggests that T. amboinensis uses pure search promiscuity as a mating system. This hypothesis needs to be formally tested with mating behavior observations and field measurements on the movement pattern of both sexes of the species. Further detailed studies on the lifestyle and sexual system of all the species within this genus and the development of a molecular phylogeny are necessary to elucidate the evolutionary history of gender expression in the genus Thor.
Resumo:
Drilling fluid`s contact with the productive zone of horizontal or complex wells can reduce well productivity by fluid invasion in the borehole wall. Salted drilling drill-in fluid containing polymers has often been applied in horizontal or complex petroleum wells in the poorly consolidated sandstone reservoirs of the Campos basin, Rio de Janeiro, Brazil. This fluid usually consists of natural polymers such as starch and xanthan gum, which are deposited as a filter cake on the wellbore wall during the drilling. Therefore, the identification of a lift-off mechanism failure, which can be detachment or blistering and pinholing, will enable formulation improvements. increasing the chances of success during filter cake removal in open hole operations. Likewise, knowledge of drill-in drilling fluid adsorption/desorption onto sand can help understand the filter cake-rock adhesion mechanism and consequently filter cake lift-off mechanism failures. The present study aimed to identify the lift-off failure mechanism for this type of fluid filter cake studying adsorption/desorption onto SiO(2) using solutions of natural polymers, lubricants, besides the fluid itself. Ellipsometry was employed to measure this process. The adsorption/desorption studies showed that the adsorbed layer of drilling fluid onto the walls of the rock pores is made up of clusters of polymers, linked by hydrogen bonds, which results in a force of lower cohesion compared to the electrostatic interaction between silica and polymers. Consequently, it was found that the most probable filter cake failure mechanism is rupture (blistering and pinholing), which results in the formation of ducts within the filter cake. (C) 2009 Elsevier B.V. All rights reserved.