2 resultados para Articular cartilage
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in data:rat and artificial cartilage different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. (C) 2010 Wiley Periodicals, Inc. Biopolymers 93: 520-532, 2010.
Resumo:
This article describes a solid-state NMR (SSNMR) investigation of the influence of hydration and chemical cross-linking on the molecular dynamics of the constituents of the bovine pericardium (BP) tissues and its relation to the mechanical properties of the tissue. Samples of natural phenetylamine-diepoxide (DE)- and glutaraldehyde (GL)-fixed BP were investigated by (13)C cross-polarization SSNMR to probe the dynamics of the collagen, and the results were correlated to the mechanical properties of the tissues, probed by dynamical mechanical analysis. For samples of natural BP, the NMR results show that the higher the hydration level the more pronounced the molecular dynamics of the collagen backbone and sidechains, decreasing the tissue`s elastic modulus. In contrast, in DE- and GL-treated samples, the collagen molecules are more rigid, and the hydration seems to be less effective in increasing the collagen molecular dynamics and reducing the mechanical strength of the samples. This is mostly attributed to the presence of cross-links between the collagen plates, which renders the collagen mobility less dependent on the water absorption in chemically treated samples. Copyright (C) 2010 John Wiley & Sons, Ltd.