6 resultados para Apportionment

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitivity of solar irradiance at the surface to the variability of aerosol intensive optical properties is investigated for a site (Alta Floresta) in the southern portion of the Amazon basin using detailed comparisons between measured and modeled irradiances. Apart from aerosol intensive optical properties, specifically single scattering albedo (omega(o lambda)) and asymmetry parameter (g(lambda)), which were assumed constant, all other relevant input to the model were prescribed based on observation. For clean conditions, the differences between observed and modeled irradiances were consistent with instrumental uncertainty. For polluted conditions, the agreement was significantly worse, with a root mean square difference three times larger (23.5 Wm(-2)). Analysis revealed a noteworthy correlation between the irradiance differences (observed minus modeled) and the column water vapor (CWV) for polluted conditions. Positive differences occurred mostly in wet conditions, while the differences became more negative as the atmosphere dried. To explore the hypothesis that the irradiance differences might be linked to the modulation of omega(o lambda) and g(lambda) by humidity, AERONET retrievals of aerosol properties and CWV over the same site were analyzed. The results highlight the potential role of humidity in modifying omega(o lambda) and g(lambda) and suggest that to explain the relationship seen between irradiances differences via aerosols properties the focus has to be on humidity-dependent processes that affect particles chemical composition. Undoubtedly, there is a need to better understand the role of humidity in modifying the properties of smoke aerosols in the southern portion of the Amazon basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the metropolitan area of Sao Paulo, Brazil, ozone and particulate matter ( PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors ( nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Janio Quadros and Maria Maluf road tunnels, both located in Sao Paulo. The Janio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Janio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 mu g km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in Sao Paulo tunnels are higher than those found in other cities of the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The State of Sao Paulo is the richest in Brazil, responsible for over 30% of the Brazilian gross rate. It has a population of around 30 million and its economy is based on agriculture and industrial products. Any change in climate can have a profound influence on the socio-economics of the State. In order to determine changes in total and extreme rainfall over Sao Paulo State, climate change indices derived from daily precipitation data were calculated using specially designed software. Maps of trends for a subset of 59 rain gauge stations were analysed for the period 1950-1999 and also for a subset of this period, 1990-1999, representing more recent climate. A non-parametric Mann-Kendall test was applied to the time series. Maps of trends for six annual precipitation indices (annual total precipitation (PRCPTOT), very heavy precipitation days (R20mm), events greater than the 95th percentile (R95p), maximum five days precipitation total (RX5day), the length of the largest wet spell (CWD) and the length of the largest dry spell (CDD)) were analysed for the entire period. These exhibited statistically significant trends associated with a wetter climate. A significant increase in PRCPTOT, associated with very heavy precipitation days, were observed at more than 45% of the rain gauge stations. The Mann-Kendall test identified that the positive trend in PRCPTOT is possibly related to the increase in the R95p and R20mm indices. Therefore, the results suggest that there has been a change in precipitation intensity. In contrast, the indices for the more recent shorter time series are significantly different to the longer term indices. The results indicate that intense precipitation is becoming concentrated in a few days and spread over the period when the CDD and R20mm indices show positive trends, while negative ones are seen in the RX5day index. The trends found could be related to many anthropogenic aspects such as biomass burning aerosols and land use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent study we found that crania from South Amerindian populations on each side of the Andes differ significantly in terms of craniofacial shape. Western populations formed one morphological group, distributed continuously over 14,000 km from the Fuegian archipelago (southern Chile) to the Zulia region (northwestern Venezuela). Easterners formed another group, distributed from the Atlantic Coast up to the eastern foothills of the Andes. This differentiation is further supported by several genetic studies, and indirectly by ecological and archaeological studies. Some authors suggest that this dual biological pattern is consistent with differential rates of gene flow and genetic drift operating on both sides of the Cordillera due to historical reasons. Here we show that such East-West patterning is also observable in North America. We suggest that the ""ecological zones model"" proposed by Dixon, explaining the spread of the early Americans along a Pacific dispersal corridor, combined with the evolution of different population dynamics in both regions, is the most parsimonious mechanism to explain the observed patterns of within- and between-group craniofacial variability. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerosol physical and chemical properties were measured in a forest site in central Amazonia (Cuieiras reservation, 2.61S; 60.21W) during the dry season of 2004 (Aug-Oct). Aerosol light scattering and absorption, mass concentration, elemental composition and size distributions were measured at three tower levels (Ground: 2 m; Canopy: 28 m, and Top: 40 m). For the first time, simultaneous eddy covariance fluxes of fine mode particles and volatile organic compounds (VOC) were measured above the Amazonian forest canopy. Aerosol fluxes were measured by eddy covariance using a Condensation Particle Counter (CPC) and a sonic anemometer. VOC fluxes were measured by disjunct eddy covariance using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). At nighttime, a strong vertical gradient of phosphorus and potassium in the aerosol coarse mode was observed, with higher concentrations at Ground level. This suggests a source of primary biogenic particles below the canopy. Equivalent black carbon measurements indicate the presence of light-absorbing aerosols from biogenic origin. Aerosol number size distributions typically consisted of superimposed Aitken (76 nm) and accumulation modes (144 nm), without clear events of new particle formation. Isoprene and monoterpene fluxes reached respectively 7.4 and 0.82 mg m(-2) s(-1) around noon. An average fine particle flux of 0.05 +/- 0.10 10(6) m(-2) s(-1) was calculated, denoting an equilibrium between emission and deposition fluxes of fine mode particles at daytime. No significant correlations were found between VOC and fine mode aerosol concentrations or fluxes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study Tradescantia pallida micronucleus (Trad-MCN) bioassay was used to assess the genotoxicity of particulate matter with a mass median aerodynamic diameter less than 10 pm (PM(10)) in Tangara da Serra (MT), a Brazilian Amazon region that suffers the impact of biomass burning. The levels of PM (coarse and fine size fractions) and black carbon (BC) collected were also measured. Furthermore, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified in the samples taken during the burning period by gas chromatography with flame ionization detection (GC-FID). The PM and BC results for both fractions indicate a strong correlation (p < 0.001). The analysis of alkanes indicates an anthropic influence. Retene was the most abundant PAH found, an indicator of biomass burning, and 12 other PAHs considered to be potentially mutagenic and/or carcinogenic were identified in this sample. The Trad-MCN bioassay showed a significant increase in micronucleus frequency during the period of most intense burning, possibly related to the mutagenic PAHs that were found in such extracts. This study demonstrated that Trad-MCN was sensitive and efficient in evaluating the genotoxicity of organic compounds from biomass burning. It further emphasizes the importance of performing chemical analysis, because changes in chemical composition generally have a negative effect on many living organisms. This bioassay (ex situ), using T. pallida with chemical analysis, is thus recommended for characterizing the genotoxicity of air pollution. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.