5 resultados para Antitumor research

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemistry of Ru(III) complexes containing dmso as a ligand has become an interesting area in the cancer treatment field. Because of this, structural knowledge and chemistry of the moiety Ru(III)-dmso have become important to cancer research. The crystal structures of the compounds mer-[RuCl(3)(dms)(3)] (1) and mer-[RuCl(3)(dms)(2)(dmso)]:mer-[RuCl(3)(dms)(3)] (2) were determined by X-ray crystallography and a speciation of the presence of intramolecular hydrogen bond in these structures has been studied. Compound (1) crystallizes in the orthorhombic space group, Pna2(1); a = 16.591(8) angstrom, b = 8.724(2) angstrom. c = 10.547(3) angstrom; Z = 12 and (2) crystallizes in the space group, P2(1)/C: a = 11.9930(2) angstrom, b = 7.9390(2) angstrom, c = 15.8700(3) angstrom, beta = 93.266(1)degrees, Z = 2. From the X-ray structures solved in this work, were possible to suggest an interpretation for the broad lines observed in the EPR spectra of the Ru(III) compounds explored here. Also, the exchange interactions detected by EPR spectroscopy in solid state and in solution, confirm the presence of van der Waals interactions such as C-H center dot center dot center dot Cl in the compounds (1), (2) and (3). The use of techniques such as IR, UV-vis, (1)H NMR and EPR Spectroscopy and Cyclic Voltammetry were applied in this work to analyze the behavior of these metallocompounds. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes the synthesis of a new ruthenium nitrosyl complex with the formula [RuCl(2)NO(BPA)] [BPA = (2-hydroxybenzyl)(2-methylpyridyl)amine ion], which was synthesized and characterized by spectroscopy, cyclic voltammetry, X-ray crystallography, and theoretical calculation data. The biological studies of this complex included in vitro cytotoxic assays, which revealed its activity against two different tumor cell lines (HeLa and Tm5), with efficacy comparable to that of cisplatin, a metal-based drug that is administered in clinical treatment. The in vivo studies showed that [RuCl2NO(BPA)] is effective in reducing tumor mass. Also, our results suggest that the mechanism of action of [RuCl(2)NO(BPA)] includes binding to DNA, causing fragmentation of this biological molecule, which leads to apoptosis. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: High-risk human papillomavirus (HPV) is the main etiologic factor for cervical cancer. The severity of HPV-associated cervical lesions has been correlated to the number of infiltrating macrophages. The objective of this work is to characterize the role of tumor-associated macrophages (TAM) on the immune cellular response against the tumor. Experimental Design: We used the HPV16 E6- and E7-expressing TC-1 mouse tumor model to study the effect of TAM on T-cell function in vitro, and depleted TAM, using clodronate-containing liposomes, to characterize its role in vivo. Results: TAM, characterized by the positive expression of CD45, F4/80, and CD11b, formed the major population of infiltrating tumor cells. TAM displayed high basal Arginase I activity, producing interleukin-10 (IL-10); they were resistant to iNOSll activity induction, therefore reversion to M1 phenotype, when stimulated in vitro with lipopolysaccharide/IFN gamma, indicating an M2 phentoype. In cultures of isolated TAM, TAM induced regulatory phenotype, characterized by IL-10 and Foxp3 expression, and inhibited proliferation of CD8 lymphocytes. In vivo, depletion of TAM inhibited tumor growth and stimulated the infiltration of tumors by HPV16 E7(49-57)-specific CD8 lymphocytes, whereas depletion of Gr1(+) tumor-associated cells had no effect. Conclusions: M2-like macrophages infiltrate HPV16-associated tumors causing suppression of antitumor T-cell response, thus facilitating tumor growth. Depletion or phenotype alteration of this population should be considered in immunotherapy strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazilian National Council of Research (CNPq)[471834/2006-8]