4 resultados para Animal feed

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To evaluate the effect of monensin on the performance of growing cattle under different environmental temperatures, 24 male calves (81.9 +/- 7.7 kg mean weight and 100 days old) were distributed in a 2 x 2 factorial arrangement, contrasting 0 or 85 mg monensin/animal per day at 24.3 or 33.2 degrees C (environmental temperatures). Monensin supplementation increased weight gain (P=0.036), improved feed efficiency (P=0.040), increased ruminal concentrations of volatile fatty acids (VFA; P=0.003) and decreased the molar proportion of butyrate (P=0.034); all effects irrespective of environmental temperatures. A temperature-dependent monensin effect was detected on nitrogen retention (P=0.018) and N retained:N absorbed ratio (P=0.012). Animals fed monensin retained higher N amounts than those of the non-supplemented ones when the environmental temperature was 33.2 degrees C. Environmental temperature and monensin supplementation showed an interaction effect on urine N concentration (P=0.003). Temperature did not affect N excretion in monensin-fed animals, but increased N excretion in the non-supplemented ones. Monensin increased the crude protein (CP) digestibility (P=0.094) for

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To test the effect of monensin on the mineral balance of growing cattle under different environmental temperatures, 24 male steers were assigned in a 2 x 2 factorial arrangement, contrasting 0 and 85 mg monensin/animal per day at 24.3 and 33.2 degrees C (environmental temperatures). Monensin effect was directly modulated by the environmental temperature: it increased apparent retentions of P (P=0.066), Na (P=0.005) and K (P=0.003), at the higher temperature and decreased these apparent retentions at the lower temperature, as compared with non-supplemented animals. Monensin increased fecal Ca (P=0.037), and urinary P (P=0.002), Na (P=0.003), K (P=0.014), Mg (P=0.051) and Zn (P=0.091), with higher concentrations of these minerals in animals held at 24.3 degrees C and lower concentrations in those at 33.2 degrees C, as compared with non-supplemented animals. Monensin decreased serum Mg (P=0.001) and increased serum Zn (P=0.071) in animals at 33.2 degrees C and increased serum Mg and decreased serum Zn at 24.3 degrees C. Irrespective of temperature, monensin increased both apparent absorption (P=0.058) and apparent retention (P=0.093) of P, and also urine Cu (P=0.085). Environmental temperature modulated monensin effects on mineral balance. Monensin increased apparent retention of several minerals in animals under heat stress. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of substituting soybean meal for urea on milk protein fractions (casein, whey protein and non-protein nitrogen) of dairy cows in three dietary levels. Nine mid-lactation Holstein cows were used in a 3 x 3 Latin square arrangement, composed of 3 treatments, 3 periods of 21 days each, and 3 squares. The treatments consisted of three different diets fed to lactating cows, which were randomly assigned to three groups of three animals: (A) no urea inclusion, providing 100% of crude protein (CP), rumen undegradable protein (RUP) and rumen degradable protein (RDP) requirements, using soybean meal and sugarcane as roughage; (B) urea inclusion at 7.5 g/kg DM in partial substitution of soybean meal CP equivalent; (C) urea inclusion at 15 g/kg DM in partial substitution of soybean meal CP equivalent. Rations were isoenergetic and isonitrogenous-1 60 g/kg DM of crude protein and 6.40 MJ/kg DM of net energy for lactation. When the data were analyzed by simple polynomial regression, no differences were observed among treatments in relation to milk CP content, true protein, casein, whey protein, non-casein and non-protein nitrogen, or urea. The milk true protein:crude protein and casein:true protein ratios were not influenced by substituting soybean meal for urea in the diet. Based on the results it can be concluded that the addition of urea up to 15 g/kg of diet dry matter in substitution of soybean meal did not alter milk protein concentration casein, whey protein and its non-protein fractions, when fed to lactating dairy cows. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four rumen-fistulated Holstein heifers (134 +/- 1 kg initial BW) were used in a 4 x 4 Latin square design to determine the effects of delaying daily feed delivery time on intake, ruminal fermentation, behavior, and stress response. Each 3-wk experimental period was preceded by 1 wk in which all animals were fed at 0800 h. Feed bunks were cleaned at 0745 h and feed offered at 0800 h (T0, no delay), 0900 (T1), 1000 (T2), and 1100 (T3) from d1 to 21 with measurements taken during wk 1 and 3. Heifers were able to see each other at all times. Concentrate and barley straw were offered in separate compartments of the feed bunks, once daily and for ad libitum intake. Ruminal pH and saliva cortisol concentrations were measured at 0, 4, 8, and 12 h postfeeding on d 3 and 17 of each experimental period. Fecal glucocorticoid metabolites were measured on d 17. Increasing length of delay in daily feed delivery time resulted in a quadratic response in concentrate DMI (low in T1 and T2; P = 0.002), whereas straw DMI was greatest in T1 and T3 (cubic P = 0.03). Treatments affected the distribution of DMI within the day with a linear decrease observed between 0800 and 1200 h but a linear increase during nighttimes (2000 to 0800 h), whereas T1 and T2 had reduced DMI between 1200 and 1600 h (quadratic P = 0.04). Water consumption (L/d) was not affected but decreased linearly when expressed as liters per kilogram of DMI (P = 0.01). Meal length was greatest and eating rate slowest in T1 and T2 (quadratic P <= 0.001). Size of the first meal after feed delivery was reduced in T1 on d 1 (cubic P = 0.05) and decreased linearly on d 2 (P = 0.01) after change. Concentrate eating and drinking time (shortest in T1) and straw eating time (longest in T1) followed a cubic trend (P = 0.02). Time spent lying down was shortest and ruminating in standing position longest in T1 and T2. Delay of feeding time resulted in greater daily maximum salivary cortisol concentration (quadratic P = 0.04), which was greatest at 0 h in T1 and at 12 h after feeding in T2 (P < 0.05). Daily mean fecal glucocorticoid metabolites were greatest in T1 and T3 (cubic P = 0.04). Ruminal pH showed a treatment effect at wk 1 because of increased values in T1 and T3 (cubic P = 0.01). Delaying feed delivery time was not detrimental for rumen function because a stress response was triggered, which led to reduced concentrate intake, eating rate, and size of first meal, and increased straw intake. Increased salivary cortisol suggests that animal welfare is compromised.