33 resultados para Ancillary ligand

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polynorbornadiene and polynorbornene were synthesized via ring opening metathesis polymerization (ROMP) with [RuCl(2)(PPh(3))(2)(amine)] as catalyst precursors, amine = piperidine (1) or perhydroazepine (2) in the presence of 5 mu L of ethyl diazoacetate (EDA) ([monomer]/[Ru] = 5000; 40 degrees C with 1; 25 degrees C with 2). The effects of the solvent volume (2-8 mL of CHCl(3)) reaction time (5-120 min) and atmosphere type (argon and air) on the yields were investigated to observe the behavior of the two different precursors. Quantitative yields were obtained for 60 or 120 min regardless of the starting volumes, either in argon or air, with both Ru species. However, low yields were obtained for short times (5-30 min) when the reactions are performed with large volumes (6-8 mL). In argon, the yields were larger with 2, associated to a faster propagation reaction controlled by the Ru active species. In air, the yields were larger with 1, associated to a higher resistance to O(2) of the starting and propagating Ru species. The different activities between 1 and 2 are discussed considering the steric hindrance and electronic characteristics of the amines such as ancillary ligands and their arrangements with PPh(3) and Cl(-) ions in the metal centers. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reactivity of the new complex [RuCl(2)(PPh(3))(2)(3,5-Me(2)piperidine)], complex 1, was investigated for ring opening metathesis polymerization (ROMP) of norbornene (NBE) and norbornadiene (NBD) in the presence of ethyl diazoacetate (EDA) in CHCl(3). The aim is to observe the combination of PPh(3) and an amine as ancillary ligands concerning the steric hindrance and the electronic perturbation in the properties of the N-bound site when replacing the amines. Thus, the results with 1 were compared to the results obtained when the amine is piperidine (complex 2). Reaction with 1 provides 70% yield of isolated polyNBE (M(n) =8.3 x 10(4) g/mol; PDI = 2.03), whereas 2 provides quantitative reaction (M(n) = 1.2 x 10(5) g/mol; PDI = 1.90) with [NBE]/[Ru] = 5000, [EDA]/[Ru] = 48 and 1.1 mu mol of Ru for 5 min at 25 degrees C. The resulting polymers showed c.a. 62% of trans-polyNBE, determined by (1)H NMR, and T(g) = 32 degrees C, determined by DSC and DMTA. For ROMP of NBD, 1 showed quantitative yield with PDI =2.62 when [NBD]/[Ru] = 5000 for 20 min at 25 degrees C, whereas the reaction with 2 reached 55% with PDI = 2.16 in the same conditions. It is concluded that the presence of the two methyl groups in the piperidine ring provides an increase in the induction period to produce the Ru-carbene species justifying better polyNBE results with 2, and a greater amine(sigma)-> Ru(pi)-> monomer synergism which contributed to the best activation of less tensioned olefin as NBD. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polynorbonerne with high molecular weight was obtained via ring opening metathesis polymerization using catalysts derived from [RuCl(2)(PPh(2)Bz)(2) L] (1 for L = PPh(2) Bz; 2 for L = piperidine) type of complexes when in the presence of ethyl diazoacetate in CHCl(3). The polymer precipitated within a few minutes at 50 degrees C when using 1 with ca. 50% yield ([NBE]/[Ru] = 5000). Regarding 2, for either 30 min at 25 C or 5 min at 50 degrees C, more than 90% of yields are obtained; and at 50 C for 30 min a quantitative yield is obtained. The yield and PDI values are sensitive to the [NBE]/[Ru] ratio. The reaction of 1 with either isonicotinamide or nicotinamide produces six-coordinated complexes of [RuCl(2)(PPh(2)Bz)(2)(L)(2)] type, which are almost inactive and produce only small amounts of polymers at 50 C for 30 min. Thus, we Concluded that the novel complexes show very distinct reactivities for ROMP of NBE. This has been rationalized on account of a combination of synergistic effects of the phosphine-amine ancillary ligands. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past 20 y, the hormone melatonin was found to be produced in extrapineal sites, including cells of the immune system. Despite the increasing data regarding the biological effects of melatonin on the regulation of the immune system, the effect of this molecule on T cell survival remains largely unknown. Activation-induced cell death plays a critical role in the maintenance of the homeostasis of the immune system by eliminating self-reactive or chronically stimulated T cells. Because activated T cells not only synthesize melatonin but also respond to it, we investigated whether melatonin could modulate activation-induced cell death. We found that melatonin protects human and murine CD4(+) T cells from apoptosis by inhibiting CD95 ligand mRNA and protein upregulation in response to TCR/CD3 stimulation. This inhibition is a result of the interference with calmodulin/calcineurin activation of NFAT that prevents the translocation of NFAT to the nucleus. Accordingly, melatonin has no effect on T cells transfected with a constitutively active form of NFAT capable of migrating to the nucleus and transactivating target genes in the absence of calcineurin activity. Our results revealed a novel biochemical pathway that regulates the expression of CD95 ligand and potentially other downstream targets of NFAT activation. The Journal of Immunology, 2010, 184: 3487-3494.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Tim-3 is a Th1 lymphocytes membrane protein with inhibitory function. Its ligand, galectin-9, was recently identified and it is expressed in some lymphocyte subpopulation. In addition, endothelial cells and fibroblasts can also express galectin-9 according to the local cytokine milieu. Both molecules can act as important regulatory tools in the immune system. Aim: Evaluate the expression of these immunoregulatory molecules inside kidney allografts during acute rejection episodes. Methods: By using a quantitative polymerase chain reaction assay, we measured the levels of messenger RNA (mRNA) for galectin-9 and Tim-3 in 21 samples obtained at allograft nephrectomy. Five samples received the histological diagnosis of acute non-vascular rejection (ANVR), twelve of acute vascular rejection (AVR), and five of loss of non-immune cause (LNIC; as control). As cytolytic response markers we measured mRNA levels of granzyme B, interferon-gamma and perforin. The statistic analysis was performed using one way analysis of variance (ANOVA) and Pearson correlation. Results: The mean levels of Tim-3 mRNA expression were 13.99 +/- 6.99 for LNIC, 48.13 +/- 54.47 for RACNV and 238.63 +/- 333.14 for RAV (p = 0.004). For galectin-9, the mean values were 0.57 +/- 0.49 for LNIC, 0.66 +/- 0.36 for RACNV and 2.34 +/- 1.62 for RAV (p = 0.006). Furthermore, there was a positive correlation between both molecules (r = 0.526, p = 0.016). Also. granzyme B, perforin and interferon-gamma mRNA expression were different among the three groups. Conclusion: Messenger RNA level expressions of all the studied molecules were higher inside allografts with more severe rejection. Moreover, there was a positive correlation between galectin-9 and Tim-3 mRNA levels. The simultaneous expression of galectin-9 and Tim-3 may indicate an immunoregulatory function, during the ongoing cytotoxic response. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One pair of reactants, Cu(hfac)(2) = M and the hinge-flexible radical ligand 5-(3-N-tert-butyl-N-aminoxylphenyl)pyrimidine (3PPN = L), yields a diverse set of five coordination complexes: a cyclic loop M(2)L(1) dimer; a 1:1 cocrystal between an M(2)L(2) loop and an ML(2) fragment; a ID chain of M(2)L(2) loops linked by M; two 2D M(3)L(2) networks of (M-L)(n) chains crosslinked by M with different repeat length pitches; a 3D M(3)L(2) network of M(2)L(2) loops cross-linking (M-L)(n)-type chains with connectivity different from those in the 2D networks. Most of the higher dimensional complexes exhibit reversible, temperature-dependent spin-state conversion of high-temperature paramagnetic states to lower magnetic moment states having antiferromagnetic exchange within Cu-ON bonds upon cooling, with accompanying bond contraction. The 3D complex also exhibited antiferromagnetic exchange between Cu(II) ions linked in chains through pyrimidine rings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the syntheses and characterization of 2-mercaptopyridine (pyS(-)) complexes containing ruthenium(II) with the following general formula [Ru(pyS)(2)(P-P)], P-P = (c-dppen) = cis-1,2-bis(diphenylphosphino)ethylene) (1); (dppe)=1,2-bis(diphenylphosphino)ethane (2); (dppp)=1,3-bis(diphenylphosphino)propane (3) and (dppb) = 1,4-bis(diphenylphosphino)butane (4). The complexes were synthesized from the mer- or fac-[RuCl(3)(NO)(P-P)] precursors in the presence of triethylamine in methanol solution with dependence of the product on the P-P ligand. The reaction of pyS- with a ruthenium complex containing a bulky aromatic diphosphine dppb disclosed a major product with a dangling coordinated dppbO-P, the [Ru(pyS)(2)(NO)(eta(1)-dppbO-P)]PF(6) (5). In addition, this work also presents and discusses the spectroscopic and electrochemical behavior of 1-5. and report the X-ray structures for I and S. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of therapeutic compounds targeting transthyretin (TTR) is challenging due to the low specificity of interaction in the hormone binding site. Such feature is highlighted by the interactions of TTR with diclofenac, a compound with high affinity for TTR, in two dissimilar modes, as evidenced by crystal structure of the complex. We report here structural analysis of the interactions of TTR with two small molecules, 1-amino-5-naphthalene sulfonate (1,5-AmNS) and 1-anilino-8-naphthalene sulfonate (1,8-ANS). Crystal structure of TTR: 1,8-ANS complex reveals a peculiar interaction, through the stacking of the naphthalene ring between the side-chain of Lys15 and Leu17. The sulfonate moiety provides additional interaction with Lys15` and a water-mediated hydrogen bond with Thr119`. The uniqueness of this mode of ligand recognition is corroborated by the crystal structure of TTR in complex with the weak analogue 1,5-AmNS, the binding of which is driven mainly by hydrophobic partition and one electrostatic interaction between the sulfonate group and the Lys15. The ligand binding motif unraveled by 1,8-ANS may open new possibilities to treat TTR amyloid diseases by the elucidation of novel candidates for a more specific pharmacophoric pattern. (C) 2009 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here we show, that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2) < 2 h) of , radiolabeled T(3) vs. T(3) (T(1/2), approximate to 5-7 h). We cannot discern relationships between this effect and ligand size, activity or affinity for TR beta. One ligand, GC-24, binds the TR LBC and (weakly) to the TR beta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two coordination octahedral Sn(IV) complexes [Sn(L)(2)] and cis-[SnCl(2)(L)(dmso)], where H(2)L is 2-hydroxyacetophenone (S-benzydithiocarbazate), were prepared and characterized by elemental analysis, IR, NMR ((1)H, (13)C), (119)Sn Mossbauer spectroscopies and X-ray diffraction techniques to investigate their structural properties. Both crystallize in the Monoclinic system, with parameters: a = 8.1905(3), b = 30.8811(15), c = 12.8959(7) angstrom, beta = 94.465(3)degrees and Z = 4 for [Sn(L)(2)] and a = 8.5247(2), b = 21.5445(7), c = 12.3706(3) angstrom, beta = 96.932(2)degrees and Z = 4 for cis-[SnCl(2)(L)(dmso)]. In both complexes, the Sn(IV) central atom is coordinated in a distorted octahedral geometry with the thiolate ligand (L(2-)) coordinated via O, N and S atoms. The (119)Sn Mossbauer spectroscopy of the complexes were studied and the results revealed that both complexes posses isomer shift (delta) and quadrupole splitting (Delta), which are almost the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thyroid hormones exert most of their physiological effects through two thyroid hormone receptor (TR) subtypes, TR alpha and TR beta, which associate with many transcriptional coregulators to mediate activation or repression of target genes. The search for selective TR beta ligands has been stimulated by the finding that several pharmacological actions mediated by TR beta might be beneficial in medical conditions such as obesity, hypercholesterolemia and diabetes. Here, we present a new methodology which employs surface plasmon resonance to investigate the interactions between TR beta ligand binding domain (LBD) complexes and peptides derived from the nuclear receptor interaction motifs of two of its coregulators, SRC2 and DAX1. The effect of several TR beta ligands, including the TR beta selective agonist GC-I and the TR beta selective antagonist NH-3, were investigated. We also determined the kinetic rate constants for the interaction of TR beta-T3 with both coregulators, and accessed the thermodynamic parameters for the interaction with DAX1. Our findings Suggest that flexibility plays an important role in the interaction between the receptor and its coregulators. and point out important aspects of experimental design that should be addressed when using TR beta LBD and its agonists. Furthermore, the methodology described here may be useful for the identification of new TR beta ligands. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of cis-[RuCl2(dppb)(N-N)], dppb = 1,4-bis(diphenylphosphino)butane, complexes with the ligand HSpymMe(2), 4,6-dimethyl-2-mercaptopyrimidine, yielded the cationic complexes [Ru(SpymMe(2))(dppb)(N-N)]PF6, N-N = bipy (1) and Me-bipy (2), bipy = 2,2`-bipyridine and Me-bipy = 4,4`dimethyl-2,2`-bipyridine, which were characterized by spectroscopic and electrochemical techniques and X-ray crystallography and elemental analysis. Additionally, preliminary in vitro tests for antimycobacterial activity against Mycobacterium tuberculosis H37Rv ATCC 27264 and antitumor activity against the MDA-MB-231 human breast tumor cell line were carried out on the new complexes and also on the precursors cis-[RuCl2(dppb)(N-N)], N-N = bipy (3) and Me-bipy (4) and the free ligands dppb, bipy, Me-bipy and SpymMe(2). The minimal inhibitory concentration (MIC) of compounds needed to kill 90% of mycobacterial cells and the IC50 values for the antitumor activity were determined. Compounds 1-4 exhibited good in vitro activity against M. tuberculosis, with MIC values ranging between 0.78 and 6.25 mu g/mL, compared to the free ligands (MIC of 25 to >50 mu g/mL) and the drugs used to treat tuberculosis. Complexes I and 2 also showed promising antitumor activity, with IC50 values of 0.46 +/- 0.02 and 0.43 +/- 0.08 mu M, respectively, against MDA-MB-231 breast tumor cells. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thyroid hormone receptors (TR) are hormone-dependent transcription regulators that play a major role in human health, development, and metabolic functions. The thyroid hormone resistance syndrome, diabetes, obesity, and some types of cancer are just a few examples of important diseases that are related to TR malfunctioning, particularly impaired hormone binding. Ligand binding to and dissociation from the receptor ultimately control gene transcription and, thus, detailed knowledge of binding and release mechanisms are fundamental for the comprehension of the receptor`s biological function and development of pharmaceuticals. In this work, we present the first computational study of ligand entry into the ligand binding domain (LBD) of a nuclear receptor. We report molecular dynamics simulations of ligand binding to TRs using a generalization of the steered molecular dynamics technique designed to perform single-molecule pulling simulations along arbitrarily nonlinear driving pathways. We show that only gentle protein movements and conformational adaptations are required for ligand entry into the LBDs and that the magnitude of the forces applied to assist ligand binding are of the order of the forces involved in ligand dissociation. Our simulations suggest an alternative view for the mechanisms ligand binding and dissociation of ligands from nuclear receptors in which ligands can simply diffuse through the protein surface to reach proper positioning within the binding pocket. The proposed picture indicates that the large-amplitude protein motions suggested by the apo- and holo-RXR alpha crystallographic structures are not required, reconciling conformational changes of LBDs required for ligand entry with other nuclear receptors apo-structures that resemble the ligand-bound LBDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen Receptor (ER) is an important target for pharmaceutical design. Like other ligand-dependent transcription factors, hormone binding regulates ER transcriptional activity. Nevertheless, the mechanisms by which ligands enter and leave ERs and other nuclear receptors remain poorly understood. Here, we report results of locally enhanced sampling molecular dynamics simulations to identify dissociation pathways of two ER ligands [the natural hormone 17 beta-estradiol (E-2) and the selective ER modulator raloxifene (RAL)] from the human ER alpha ligand-binding domain in monomeric and dimeric forms. E-2 dissociation occurs via three different pathways in ER monomers. One resembles the mousetrap mechanism (Path I), involving repositioning of helix 12 (H12), others involve the separation of H8 and H11 (Path II), and a variant of this pathway at the bottom of the ligand-binding domain (Path II`). RAL leaves the receptor through Path I and a Path I variant in which the ligand leaves the receptor through the loop region between H11 and H12 (Path I`). Remarkably, ER dimerization strongly suppresses Paths II and II` for E-2 dissociation and modifies RAL escape routes. We propose that differences in ligand release pathways detected in the simulations for ER monomers and dimers provide an explanation for previously observed effects of ER quaternary state on ligand dissociation rates and suggest that dimerization may play an important, and hitherto unexpected, role in regulation of ligand dissociation rates throughout the nuclear receptor family.