102 resultados para Anatomic structures
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
BACKGROUND: One of the key elements for a successful endoscopic intervention in the ventricular system is the ability to recognize the anatomic structures and use them as a reference. OBJECTIVE: To measure the choroid plexus with endoscopy in the interventricular foramen, together with the structures on the third ventricle floor, and to compare these variables. METHODS: An observational prospective study was carried out on 37 brains of cadavers for which the cause of death was assessed at the Death Check Unit of the University of Sao Paulo in April 2008. This study was done on adults of both sexes with a rigid neuroendoscope. Endoscopic images were recorded, submitted for correction of distortion, and then measured. RESULTS: The measurements of the choroid plexus in the interventricular foramen, laterolateral distance of mammillary bodies, distance from the infundibular recess to the mammillary bodies, and area of the triangle in the tuber cinereum were 1.71 +/- 0.77 mm, 2.23 +/- 0.74 mm, 3.22 +/- 0.82 mm, and 3.69 +/- 2.09 mm(2), respectively. The ventricle floor was opaque in 84% of cases. The internal distance of mammillary bodies was absent in 89%. Associations between the translucent floor of the third ventricle and laterolateral distance of mammillary bodies, internal distance of mammillary bodies, and age were identified. CONCLUSION: Before this research, there was no record of the measurements of the choroid plexus in the interventricular foramen. The remaining variables of the present study show a greater number in normal brains compared with others.
Resumo:
TEMA: ferimentos causados por projéteis de arma de fogo apresentam alta incidência na região da cabeça e face. A articulação temporomandibular pode estar envolvida, além de estruturas anatômicas importantes como o nervo facial, necessitando de equipe multidisciplinar para efetuar tratamento adequado. PROCEDIMENTOS: apresentação de caso clínico de fratura condilar cominutiva causada por projétil de arma de fogo tratado de forma não-cirúrgica associado à terapia miofuncional orofacial. Paciente encaminhado para avaliação e procedimentos fonoaudiológicos após conduta da equipe de cirurgia bucomaxilofacial, sem remoção do projétil, alojado superficialmente, próximo da origem do músculo esternocleidomastóideo à direita, com fratura condilar cominutiva e lesão do nervo facial. Foram aspectos observados em avaliação: mordida aberta anterior, importante redução da amplitude dos movimentos mandibulares com desvios para o lado acometido, ausência de lateralidade contralateral, dor muscular, paralisia e parestesia em terço médio e superior da hemiface direita. Realizadas sessões de terapia miofuncional seguindo protocolo específico para traumas de face constando de: drenagem de edema; manipulações na musculatura levantadora da mandíbula ipsilateral; ampliação e correção dos movimentos mandibulares; procedimentos específicos referentes à paralisia facial e reorganização funcional direcionada. RESULTADOS: após oito semanas de terapia os resultados obtidos mostram restabelecimento de amplitude e da simetria dos movimentos mandibulares, reorganização da mastigação, adequação da deglutição e fala, remissão da sintomatologia dolorosa e remissão da paralisia do terço médio. CONCLUSÃO: o tratamento conservador da fratura por meio da terapia miofuncional orofacial resultou na reabilitação funcional da mandíbula e face dirigindo os movimentos e estimulando a adequação das funções estomatognáticas.
Resumo:
Swallowing dynamics involves the coordination and interaction of several muscles and nerves which allow correct food transport from mouth to stomach without laryngotracheal penetration or aspiration. Clinical swallowing assessment depends on the evaluator`s knowledge of anatomic structures and of neurophysiological processes involved in swallowing. Any alteration in those steps is denominated oropharyngeal dysphagia, which may have many causes, such as neurological or mechanical disorders. Videofluoroscopy of swallowing is presently considered to be the best exam to objectively assess the dynamics of swallowing, but the exam needs to be conducted under certain restrictions, due to patient`s exposure to radiation, which limits periodical repetition for monitoring swallowing therapy. Another method, called cervical auscultation, is a promising new diagnostic tool for the assessment of swallowing disorders. The potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. Even so, the captured sound has an amount of noise, which can hamper the evaluator`s decision. In that way, the present paper proposes the use of a filter to improve the quality of audible sound and facilitate the perception of examination. The wavelet denoising approach is used to decompose the noisy signal. The signal to noise ratio was evaluated to demonstrate the quantitative results of the proposed methodology. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: To study the microanatomy of the brainstem related to the different safe entry zones used to approach intrinsic brainstem lesions. METHODS: Ten formalin-fixed and frozen brainstem specimens (20 sides) were analyzed. The white fiber dissection technique was used to study the intrinsic microsurgical anatomy as related to safe entry zones on the brainstem surface. Three anatomic landmarks on the anterolateral brainstem surface were selected: lateral mesencephalic sulcus, peritrigeminal area, and olivary body. Ten other specimens were used to study the axial sections of the inferior olivary nucleus. The clinical application of these anatomic nuances is presented. RESULTS: The lateral mesencephalic sulcus has a length of 7.4 to 13.3 mm (mean, 9.6 mm) and can be dissected safely in depths up to 4.9 to 11.7 mm (mean, 8.02 mm). In the peritrigeminal area, the distance of the fifth cranial nerve to the pyramidal tract is 3.1 to 5.7 mm (mean, 4.64 mm). The dissection may be performed 9.5 to 13.1 mm (mean, 11.2 mm) deeper, to the nucleus of the fifth cranial nerve. The inferior olivary nucleus provides safe access to lesions located up to 4.7 to 6.9 mm (mean, 5.52 mm) in the anterolateral aspect of the medulla. Clinical results confirm that these entry zones constitute surgical routes through which the brainstem may be safely approached. CONCLUSION: The white fiber dissection technique is a valuable tool for understanding the three-dimensional disposition of the anatomic structures. The lateral mesencephalic sulcus, the peritrigeminal area, and the inferior olivary nucleus provide surgical spaces and delineate the relatively safe alleys where the brainstem can be approached without injuring important neural structures.
Resumo:
Described in this article is a novel device that facilitates study of the cross-sectional anatomy of the human head. In designing our device, we aimed to protect sections of the head from the destructive action of handling during anatomy laboratory while also ensuring excellent visualization of the anatomic structures. We used an electric saw to create 15-mm sections of three cadaver heads in the three traditional anatomic planes and inserted each section into a thin, perforated display box made of transparent acrylic material. The thin display boxes with head sections are kept in anatomical order in a larger transparent acrylic storage box containing formaldehyde solution, which preserves the specimens but also permits direct observation of the structures and their anatomic relationships to each other. This box-within-box design allows students to easily view sections of a head in its anatomical position as well as to examine internal structures by manipulating individual display boxes without altering the integrity of the preparations. This methodology for demonstrating cross-section anatomy allows efficient use of cadaveric material and technician time while also giving learners the best possible handling and visualization of complex anatomic structures. Our approach to teaching cross-sectional anatomy of the head can be applied to any part of human body, and the value of our device design will only increase as more complicated understandings of cross-sectional anatomy are required by advances and proliferation of imaging technology. Anat Sci Educ 3: 141-143, 2010. (C) 2010 American Association of Anatomists.
Resumo:
Purpose: Orthodontic miniscrews are commonly used to achieve absolute anchorage during tooth movement. One of the most frequent complications is screw loss as a result of root contact. Increased precision during the process of miniscrew insertion would help prevent screw loss and potential root damage, improving treatment outcomes. Stereo lithographic surgical guides have been commonly used for prosthetic implants to increase the precision of insertion. The objective of this paper was to describe the use of a stereolithographic surgical guide suitable for one-component orthodontic miniscrews based on cone beam computed tomography (CBCT) data and to evaluate implant placement accuracy. Materials and Methods: Acrylic splints were adapted to the dental arches of four patients, and six radiopaque reference points were filled with gutta-percha. The patients were submitted to CBCT while they wore the occlusal splint. Another series of images was captured with the splint alone. After superimposition and segmentation, miniscrew insertion was simulated using planning software that allowed the user to check the implant position in all planes and in three dimensions. In a rapid-prototyping machine, a stereolithographic guide was fabricated with metallic sleeves located at the insertion points to allow for three-dimensional control of the pilot bur. The surgical guide was worn during surgery. After implant insertion, each patient was submitted to CBCT a second time to verify the implant position and the accuracy of the placement of the miniscrews. Results: The average differences between the planned and inserted positions for the ten miniscrews were 0.86 mm at the coronal end, 0.71 mm at the center, and 0.87 mm at the apical tip. The average angular discrepancy was 1.76 degrees. Conclusions: The use of stereolithographic surgical guides based on CBCT data allows for accurate orthodontic mini screw insertion without damaging neighboring anatomic structures. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:860-865
Resumo:
The progress of science in search of new techniques of the nerve regeneration and the functional repair in reinnervated muscle has been the target of many researchers around the world. Consequently, nerves and muscles in different body segments asked for more enlightenment of their morphology, their interrelation with other anatomic structures and their peculiarities. One of the most significant areas that need deeper studies is the region of the head and neck, since they are often affected by important pathologies. In order to offer the researcher`s community a morphological myoneural interaction model, this study elected the levator labii superioris muscle and its motor nerve, the buccal branch of the facial nerve (VII pair) not only for its special characteristics, but also its value on the facial expression. The rat was chosen for this investigation for being easy to obtain, to keep, to manipulate and to compare this experiment with many others studies previously published. The techniques used were Mesoscopic (dissection), histoenzymologic and morphometric ones. In the results the muscle proved to have a predominance of fast twich fibers (FG and FOG) and superficial location, with a proximal bone and a distal cutaneous insertion. Its motor nerve, the buccal branch of the facial nerve (VII pair), breaks through the muscle belly into its deep face, and comprised a heterogeneous group of myelinic nerve fibers disposed in a regular form in all fascicle. Near the motor point, the nerve showed to be composed of two fascicles with different sizes. Due to the small nerve dimensions, the nerve fibers have a smaller diameter if compared to the motor nerve of pectineus muscle of the cat. Further studies with neural tracers have already had a start in order to provide more information about the distribution and the architecture of these fibers.
Resumo:
Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve), the pterygopalatine ganglion (located in the pterygopalatine fossa), the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve), and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen). The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.
Resumo:
OBJECTIVE. MRI and combined ankle and posterior subtalar MR arthrography in cadavers were used to evaluate the ligaments of the posterior and lateral talar processes. Subsequent anatomic and histologic correlation was performed. MATERIALS AND METHODS. Ten cadaveric ankles were used. Routine radiography and MRI were initially performed. Ankle and posterior subtalar MR arthrography, followed by anatomic and histologic analysis, was then performed to allow better assessment of the ligaments of the lateral and posterior talar process. RESULTS. In all subjects, MR arthrography provided superior delineation of the articular and periarticular structures, as well as the ligaments. The lateral talocalcaneal and medial talocalcaneal ligaments were best seen in the axial and coronal planes, respectively. The axial plane was best for visualizing the fibulotalocalcaneal ligament, and the sagittal plane was best for evaluating the posterior talocalcaneal ligament. The anterior and posterior talofibular ligaments and the posterior tibiotalar ligament (superficial and deep portions) were best seen in the axial plane. Histologic analysis was correlated to anatomic sectioning and showed the attachment sites of these ligaments. CONCLUSION. Combined ankle and posterior subtalar MR arthrography enhances visualization of the ligaments attaching to the posterior and lateral talar processes, including the posterior, lateral, and medial talocalcaneal and fibulotalocalcaneal ligaments.
Resumo:
Dental impression is an important step in the preparation of prostheses since it provides the reproduction of anatomic and surface details of teeth and adjacent structures. The objective of this study was to evaluate the linear dimensional alterations in gypsum dies obtained with different elastomeric materials, using a resin coping impression technique with individual shells. A master cast made of stainless steel with fixed prosthesis characteristics with two prepared abutment teeth was used to obtain the impressions. References points (A, B, C, D, E and F) were recorded on the occlusal and buccal surfaces of abutments to register the distances. The impressions were obtained using the following materials: polyether, mercaptan-polysulfide, addition silicone, and condensation silicone. The transfer impressions were made with custom trays and an irreversible hydrocolloid material and were poured with type IV gypsum. The distances between identified points in gypsum dies were measured using an optical microscope and the results were statistically analyzed by ANOVA (p < 0.05) and Tukey's test. The mean of the distances were registered as follows: addition silicone (AB = 13.6 µm, CD=15.0 µm, EF = 14.6 µm, GH=15.2 µm), mercaptan-polysulfide (AB = 36.0 µm, CD = 36.0 µm, EF = 39.6 µm, GH = 40.6 µm), polyether (AB = 35.2 µm, CD = 35.6 µm, EF = 39.4 µm, GH = 41.4 µm) and condensation silicone (AB = 69.2 µm, CD = 71.0 µm, EF = 80.6 µm, GH = 81.2 µm). All of the measurements found in gypsum dies were compared to those of a master cast. The results demonstrated that the addition silicone provides the best stability of the compounds tested, followed by polyether, polysulfide and condensation silicone. No statistical differences were obtained between polyether and mercaptan-polysulfide materials.
Resumo:
A maioria dos gêneros da subtribo neotropical Galipeinae (tribo Galipeeae, Rutoideae) tem flores tubulosas, com várias formas e graus de conação e adnação. Galipea e outros gêneros na subtribo apresentam apenas duas anteras férteis mais cinco ou mais estaminódios, o que é intrigante porque na tribo predominam flores pentâmeras isostêmones. Visando elucidar a condição anatômica dessas características e estabelecer estados acurados para caracteres em análises filogenéticas, um estudo morfoanatômico de flores de cinco espécies de Galipea foi realizado, buscando os padrões de vascularização, posição, e união dos segmentos da flor. Destacam-se os resultados: 1) um tubo floral genuíno se forma no terço basal da flor por conação dos filetes e adnação desse tubo estaminal às pétalas; 2) as pétalas são distalmente coerentes umas às outras e aderentes aos filetes por meio de entrelaçamento de tricomas densos - um caso de pseudossimpetalia; 3) dentre as cinco (às vezes seis) estruturas tratadas como estaminódios, apenas as três externas são de fato homólogas a estames esterilizados, as demais surgem como ramificações adaxiais das pétalas; 4) os carpelos são peltados, congenitalmente conatos axial e lateralmente da base do ovário até o nível das placentas, e no estilete e estigma; na zona mediana e superior do ovário eles são unidos apenas posgenitalmente, com a epiderme diferenciada de carpelos contíguos e suturas evidentes na região ventral de cada carpelo; 5) a vascularização do disco sugere origem receptacular. As implicações desses dados para o entendimento da evolução das flores tubulosas em Galipea e grupos relacionados são discutidas.
Resumo:
The reactions of meso-1,2-bis(phenylsulfinyl)ethane (meso-bpse) with Ph2SnCl2, 2-phenyl-1,3-dithiane trans-1-trans-3-dioxide (pdtd) with n-Bu2SnCl2 and 1,2-cis-bis-(phenylsulfinyl)ethene (rac-,cis-cbpse) with Ph2SnCl2, in 1:1 molar ratio, yielded [{Ph2SnCl2(meso-bpse)}n], [{n-Bu2SnCl2(pdtd)}2] and [{Ph2SnCl2(rac,cis-cbpse)}x] (x = 2 or n), respectively. All adducts were studied by IR, Mössbauer and 119Sn NMR spectroscopic methods, elemental analysis and single crystal X-ray diffractometry. The X-ray crystal structure of [{Ph2SnCl2(meso-bpse)}n] revealed the occurrence of infinite chains in which the tin(IV) atoms appear in a distorted octahedral geometry with Cl atoms in cis and Ph groups in trans positions. The X-ray crystal structure of [{n-Bu2SnCl2(pdtd)}2] revealed discrete centrosymmetric dimeric species in which the tin(IV) atoms possess a distorted octahedral geometry with bridging disulfoxides in cis and n-butyl moieties in trans positions. The spectroscopic data indicated that the adduct containing the rac,cis-cbpse ligand can be dimeric or polymeric. The X-ray structural analysis of the free rac-,cis-cbpse sulfoxide revealed that the crystals belong to the C2/c space group.
Resumo:
The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Resumo:
Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.
Resumo:
A imagem por ressonância magnética (IRM) é o método de diagnóstico por imagem não invasivo mais sensível para avaliar as partes moles, particularmente o encéfalo, porém trata-se de uma técnica onerosa. O método fundamenta-se no fenômeno da ressonância magnética nuclear que ocorre quando núcleos atômicos com propriedades magnéticas presentes no corpo são submetidos a um campo magnético intenso, sendo posteriormente excitados por energia de radiofrequência e gerando, por sua vez, um sinal de onda de radiofrequência capaz de ser captado por uma antena receptora, passando por um processo matemático, chamado Transformada de Fourier, para posterior formação da imagem. Esse estudo objetivou realizar 10 exames completos da cabeça em cadáveres de cães normais à IRM e confeccionar um Atlas com as estruturas identificadas. As imagens foram adquiridas em um aparelho de ressonância magnética Gyroscan S15/HP Philips com campo magnético de 1,5Tesla. Os cadáveres foram posicionados com a cabeça no interior de uma bobina de cabeça humana e foram submetidos a cortes iniciais sagitais a partir de onde se planejou os cortes transversais e dorsais nas sequências de pulso spin-eco T1, T2 e DP. Em T1 utilizou-se TR=400ms e TE=30ms, T2 utilizou-se TR=2000ms e TE=80ms e na DP utilizou-se TR=2000ms e TE=30ms. A espessura do corte foi de 4mm, o número de médias foi igual a 2, a matriz foi de 256x256, o fator foi igual a 1,0 e o campo de visão foi de 14cm. A duração do exame completo da cabeça foi de 74,5minutos. As imagens obtidas com as sequências utilizadas e com a bobina de cabeça humana foram de boa qualidade. Em T1 a gordura tornou-se hiperintensa e o líquido hipointenso. Em T2 a gordura ficou menos hiperintensa e o líquido hiperintenso. A cortical óssea e o ar foram hipointensos em todas as sequências utilizadas devido a baixa densidade de prótons. A sequência DP mostrou o melhor contraste entre a substância branca e cinzenta quando comparada a T2 e a T1. T2 evidenciou o líquido cefalorraquidiano tornando possível a distinção dos sulcos e giros cerebrais. Através do exame de IRM foi possível, pelo contraste, identificar as estruturas ósseas componentes da arquitetura da região, músculos, grandes vasos venosos e arteriais e estruturas do sistema nervoso central, além de elementos do sistema digestório, respiratório e estruturas dos olhos entre outras. Nesse estudo as IRM adquiridas nas sequências T1, DP e T2 foram complementares para o estudo dos aspectos anatômicos da cabeça de cães demonstrando-os com riqueza de detalhes. O tempo requerido para o exame completo da cabeça é compátivel para uso em animais vivos desde que devidamente anestesiados e controlados. Os resultados obtidos por esse trabalho abrem caminho em nosso meio, para o estudo de animais vivos e para o início da investigação de doenças, principalmente as de origem neurológica, visto ser esta técnica excelente para a visibilização do encéfalo.