8 resultados para Analysis of network
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Mutualistic interactions involving pollination and ant-plant mutualistic networks typically feature tightly linked species grouped in modules. However, such modularity is infrequent in seed dispersal networks, presumably because research on those networks predominantly includes a single taxonomic animal group (e.g. birds). Herein, for the first time, we examine the pattern of interaction in a network that includes multiple taxonomic groups of seed dispersers, and the mechanisms underlying modularity. We found that the network was nested and modular, with five distinguishable modules. Our examination of the mechanisms underlying such modularity showed that plant and animal trait values were associated with specific modules but phylogenetic effect was limited. Thus, the pattern of interaction in this network is only partially explained by shared evolutionary history. We conclude that the observed modularity emerged by a combination of phylogenetic history and trait convergence of phylogenetically unrelated species, shaped by interactions with particular types of dispersal agents.
Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data
Resumo:
We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.
Resumo:
Background Recent studies indicate an increased frequency of mutations in the gene encoding glucocerebrosidase (GBA), a deficiency of which causes Gaucher`s disease, among patients with Parkinson`s disease. We aimed to ascertain the frequency of GBA mutations in an ethnically diverse group of patients with Parkinson`s disease. Methods Sixteen centers participated in our international, collaborative study: five from the Americas, six from Europe, two from Israel, and three from Asia. Each center genotyped a standard DNA panel to permit comparison of the genotyping results across centers. Genotypes and phenotypic data from a total of 5691 patients with Parkinson`s disease (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews) were analyzed, with multivariate logistic-regression models and the Mantel-Haenszel procedure used to estimate odds ratios across centers. Results All 16 centers could detect two GBA mutations, L444P and N370S. Among Ashkenazi Jewish subjects, either mutation was found in 15% of patients and 3% of controls, and among non-Ashkenazi Jewish subjects, either mutation was found in 3% of patients and less than 1% of controls. GBA was fully sequenced for 1883 non-Ashkenazi Jewish patients, and mutations were identified in 7%, showing that limited mutation screening can miss half the mutant alleles. The odds ratio for any GBA mutation in patients versus controls was 5.43 across centers. As compared with patients who did not carry a GBA mutation, those with a GBA mutation presented earlier with the disease, were more likely to have affected relatives, and were more likely to have atypical clinical manifestations. Conclusions Data collected from 16 centers demonstrate that there is a strong association between GBA mutations and Parkinson`s disease.
Resumo:
Several accounts put forth to explain the flash-lag effect (FLE) rely mainly on either spatial or temporal mechanisms. Here we investigated the relationship between these mechanisms by psychophysical and theoretical approaches. In a first experiment we assessed the magnitudes of the FLE and temporal-order judgments performed under identical visual stimulation. The results were interpreted by means of simulations of an artificial neural network, that wits also employed to make predictions concerning the F LE. The model predicted that a spatio-temporal mislocalisation would emerge from two, continuous and abrupt-onset, moving stimuli. Additionally, a straightforward prediction of the model revealed that the magnitude of this mislocalisation should be task-dependent, increasing when the use of the abrupt-onset moving stimulus switches from a temporal marker only to both temporal and spatial markers. Our findings confirmed the model`s predictions and point to an indissoluble interplay between spatial facilitation and processing delays in the FLE.
Resumo:
A new complex network model is proposed which is founded on growth, with new connections being established proportionally to the current dynamical activity of each node, which can be understood as a generalization of the Barabasi-Albert static model. By using several topological measurements, as well as optimal multivariate methods (canonical analysis and maximum likelihood decision), we show that this new model provides, among several other theoretical kinds of networks including Watts-Strogatz small-world networks, the greatest compatibility with three real-world cortical networks.
Resumo:
Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.
Resumo:
In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.
Resumo:
The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (R(free)=21.2%) at 1.70 angstrom resolution and 15.81% (R(free) = 19.2%) at 1.85 angstrom resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly beta-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity. (C) 2008 Elsevier Ltd. All rights reserved.