197 resultados para Aminolevulinic Acid
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to obtain and to characterize microemulsions containing 5-aminolevulinic acid (5-ALA) and to investigate the influence of these systems in drug skin permeation for further topical photodynamic therapy (PDT). 5-ALA was incorporated in water-in-oil (W/O), bicontinuous (Bc), and oil-in-water (O/W) microemulsions obtained by the titration of ethyl oleate and PEG-8 caprylic/capric glycerides:polyglyceryl-6 dioleate (3:1) mixtures with water. Selected systems were characterized by conductivity, viscosity, size of the droplets, and drug release. The stability of the drug in the microemulsions was also assessed. Moreover, the in vitro and in vivo skin permeation of 5-ALA was investigated using diffusion cells and confocal scanning laser microscopy (CSLM), respectively. Despite the fact that the O/W microemulsion decreased the 5-ALA diffusion coefficient and retarded the drug release, it also significantly increased the in vitro drug skin permeation when compared to other 5-ALA carriers. It was observed by CSLM that the red fluorescence of the skin increased homogeneously in the deeper skin layers when the 5-ALA microemulsion was applied in vivo, probably due to the formation of the photoactive protoporphyrin IX. The microemulsion developed carried 5-ALA to the deeper skin layers, increasing the red fluorescence of the skin and indicating the potentiality of the system for topical 5-ALA-PDT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Phthalocyanines have been used as systemic photosensitizers because of their high affinity towards tumour tissue, and the high rates of reactive oxygen species produced when they are irradiated during photodynamic therapy. However, the topical administration of these compounds is limited by their large size, poor hydrosolubility and ionic character. This study aimed to investigate the iontophoretic delivery of charged zinc phthalocyanine tetrasulfonic acid (ZnPcS(4)) from a hydrophilic gel to different skin layers by means of in-vitro and in-vivo studies. Six hours of passive administration was insufficient for ZnPcS(4) to cross the stratum corneum (SC) and to reach the epidermis and dermis. No positive effect was reached when anodal iontophoresis was performed, showing that the drug-electrode attraction effect was higher than the electro-osmosis contribution at a pH of 5.5. Cathodal iontophoresis, however, was able to transport significant amounts of the drug to the viable epidermis. In addition, the absence of NaCl in the formulation significantly increased (by five-fold) the amount of ZnPcS(4) that crossed the SC and accumulated in the epidermis and dermis. It was possible to visualize the drug accumulation in the follicle openings and in the epidermis, even after SC removal. In-vivo experiments in rat skin showed that these results were maintained in an in-vivo model, even with only 15 min of iontophoresis. In addition, confocal analysis of the treated skin showed a homogeneous distribution of ZnPcS(4) in the viable epidermis after this short period of cathodal iontophoresis. Anti-Cancer Drugs 22:783-793 (C) 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Photodynamic therapy (PDT) is based on the association of a light source and tight sensitive agents in order to cause the selective death of tumor cells. To evaluate topical 5-aminolaevulinic acid (5-ALA) and diode laser photodynamic single session therapy single session for non-melanoma skin cancer (NMSC), a long-term follow-up was performed. Nineteen Bowen`s disease (BD) and 15 basal cell. carcinoma (BCC) lesions were submitted to 6-h topical and occlusive 20% 5-ALA plus DMSO and EDTA, and later were exposed to 630 nm diode laser, 100 or 300 J cm(-2) dose. At 3 months tumor-free rate was 91.2% (31/34) whereas at 60 months, 57.7% (15/26), slightly higher in BCC (63.6%; 7/11). The relation between the reduction of the clinical response and the increase of tumor dimension observed at 18 months was lost at 60 months. The sBCC recurrence was earlier compared to the nBCC one. ALA-PDT offered important advantages: it is minimally invasive, an option for patients under risk of surgical complications; clinical feasibility; treatment of multiple lesions in only one session or lesions in poor heating sites and superior esthetical results. However, the recurrence rate increase after ALA-PDT diode laser single session can be observed at tong-term follow-up, and the repetitive sessions, an additional. advantage of the method, is strongly recommended. The clinical response and recurrence time seem to be related to the laser light dose and NMSC types/sub-types, thickness and dimension, which must be considered for the choice of the ALA-PDT. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Despite significant advances in neurosurgical techniques, the median survival time of patients with glioblastoma has improved little over the past 50 years and remains less than one year. Photodynamic therapy (PDT) is presently established as a widely accepted modality for the treatment of a variety of solid tumors. Objectives: This study evaluated the effect of PDT-Photogem (R) on five glioma cell lines (U87, U138, U251, U343, and T98G). Methods: The experiments were carried out in 25-cm(3) flasks with different groups of cells seeded at a density of 1 x 10(5) cells per flask. After 3 h, the medium was removed, and the cells were incubated for 4 h with Photogem (5 mu g/mL). After the incubation time, the photosensitizer-containing medium was removed and the cells were irradiated with LED (630 nm, 25 mW/cm(2), 25 J/cm(2)) devices for 17 min. For the final steps of the PDT, the cells were returned to the incubator and kept at 37 degrees C with 5% CO(2) for 24 h, the cell viability assay was assessed using the trypan blue method, and the expression of Caspase 3 mRNA levels was assessed by real-time quantitative PCR. Results: Upon PDT-Photogem (R) treatment, viable cells, as evaluated by the trypan blue dye-exclusion method, decreased in two cell lines (U87 and U138) but not in the other three. Apoptosis, as assessed by the expression of caspase-3 mRNA levels, was at least partly involved in the death mechanism of the cell lines. Conclusions: Collectively, our results indicated that PDT-Photogem (R) can act in glioma cells, thus encouraging new experiments in this field.
Resumo:
Protoporphyrin IX (PpIX) is a porphyrin derivative that is accumulated in cancerous tissue in consequence of the tumor-specific metabolic alterations. The aim of this study was to evaluate the accumulation of PpIX in mice bearing renal cell carcinoma by spectroscopy analysis. A total of 24 male Balb/c mice, 6 weeks old, were divided into six groups: Normal (without inoculation of tumor cells) and 4, 8, 13, 16, and 20 days after inoculation of tumor cells. The orthotopic tumor model of renal cancer was used. Murine renal cell carcinoma (Renca cells) were inoculated into the subcapsular space of the kidney. Normal and tumor-bearing kidneys in different progression stages were removed and analyzed by ex-vivo spectroscopy and by microscopy, for tumor histometric analysis. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and tumor-bearing kidneys in autofluorescence shape occurred in the 600-700 nm spectral region. A good correlation was found between emission band intensity at 635 nm and the tumor area.
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.
Resumo:
Meso-tetra-(N-methylpiridinium-4-yl)-porphyrin (TMPyP) and meso-tetra-(4-sulfonatophenyl)-porphyrin (TPPS(4)) are photosensitizing drugs (PS) used in photodynamic therapy (PDT). Based on the fact that these compounds present similar chemical structures but opposite charges at pH levels near physiological conditions, this work aims to evaluate the in vitro and in vivo influence of these electrical charges on the iontophoretic delivery of TMPyP and TPPS4, attempting to achieve maximum accumulation of PS in skin tissue. The iontophoretic transport of these drugs from a hydrophilic gel was investigated in vitro using porcine ear skin and vertical, flow-through diffusion cells. In vivo experiments using rats were also carried out, and the penetration of the PSs was analyzed by fluorescence microscopy to visualize the manner of how these compounds were distributed in the skin after a short period of iontophoresis application. In vitro, both passive and iontophoretic delivery of the positively charged TMPyP were much greater (20-fold and 67-fold, respectively) than those of the negatively charged TPPS(4). TPPS(4) iontophoresis in vivo increased the fluorescence of the skin only in the very superficial layers. On the other hand, iontophoresis of the positively charged drug expressively increased the rat epidermis and dermis fluorescence, indicating high amounts of this drug throughout the skin layers. Moreover, TMPyP was homogeneously distributed around and into the nuclei of the skin cells, suggesting its potential use in topical PDT. (C) 2010 Elsevier B.V. All rights reserved.
Sub-Chronic Exposure to Methylmercury at Low Levels Decreases Butyrylcholinesterase Activity in Rats
Resumo:
In this study, we examined the effects of low levels and sub-chronic exposure to methylmercury (MeHg) on butyrylcholinesterase (BuChE) activity in rats. Moreover, we examined the relationship between BuChE activity and oxidative stress biomarkers [delta-aminolevulinic acid dehydratase (delta-ALA-D) and malondialdehyde levels (MDA)] in the same animals. Rats were separated into three groups (eight animals per group): (Group I) received water by gavage; (Group II) received MeHg (30 mu g/kg/day) by gavage; (Group III) received MeHg (100 mu g/kg/day). The time of exposure was 90 days. BuChE and ALA-D activities were measured in serum and blood, respectively; whereas MDA levels were measured in plasma. We found BuChE and ALA-D activities decreased in groups II and III compared to the control group. Moreover, we found an interesting negative correlation between plasmatic BuChE activity and MDA (r = -0.85; p < 0.01) and a positive correlation between plasmatic BuChE activity and ALA-D activities (r = 0.78; p < 0.01), thus suggesting a possible relationship between oxidative damage promoted by MeHg exposure and the decrease of BuChE activity. In conclusion, long-term exposure to low doses of MeHg decreases plasmatic BuChE activity. Moreover, the decrease in the enzyme is strongly correlated with the oxidative stress promoted by the metal exposure. This preliminary finding highlights a possible mechanism for MeHg to reduce BuChE activity in plasma. Additionally, this enzyme could be an auxiliary biomarker on the evaluation of MeHg exposure.
Resumo:
Pregnant women are one of the most sensitive populations to the toxic effects associated with lead (Pb) exposure. These effects are primarily associated with plasma Pb (Pb-P), which reflects the most rapidly exchangeable fraction of Pb in the bloodstream, and elevated maternal Pb-P may be more relevant to foetal Pb exposure than whole blood Pb (Pb-B). We investigated how pregnancy affects Pb-B, Pb-P and %Pb-P/Pb-B ratios without the influence of the 6-aminolevulinic acid dehydratase (ALAD) G177C polymorphism, which is a major genetic factor influencing Pb-B, Pb-P and %Pb-P/Pb-B ratios. Genotypes for the ALAD G177C polymorphism were determined by PCR and restriction fragment length digestion in nine pregnant and 20 non-pregnant women, aged 18-33, environmentally exposed to Pb. Here, we included only women with ALAD 1-1 genotype. Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. We found no differences in Pb-B (P > 0.05). However, pregnant women had a 2-fold increase in Pb-P and a 3-fold increase in %Pb-P/Pb-B (both P < 0.01) compared to nonpregnant women. These alterations in Pb concentrations associated with pregnancy are similar to those associated with different ALAD gene variants. We can now better appreciate how pregnancy affects foetal exposure to Pb without the influence of this important genetic factor.
Resumo:
Genetic factors influence whole blood lead (Pb-B) concentrations in lead exposed subjects. This study aimed at examining the combined effects (haplotype analysis) of three polymorphisms (BsmI, ApaI and FokI) in vitamin D receptor (VDR) gene on Pb-B and on the concentrations of lead in plasma (Pb-P), which is more relevant to lead toxicity, in 150 environmentally exposed subjects. Genotypes were determined by RFLP, and Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. Subjects with the bb (BsmI polymorphism) or ff (FokI polymorphism) genotypes have lower B-Pb than subjects in the other genotype groups. Subjects with the aa (ApaI polymorphism) or ff genotypes have lower P-Pb than subjects in the other genotype groups. Lower Pb-P, Pb-B, and %Pb-P/Pb-B levels were found in subjects with the haplotype combining the a, b, and f alleles for the ApaI, BsmI, and FokI polymorphisms, respectively, compared with the other haplotype groups, thus suggesting that VDR haplotypes modulate the circulating levels of lead in exposed subjects.
Resumo:
It was intended to examine the in vitro penetration of cisplatin (CIS) through porcine skin in the presence of different concentrations of monoolein (MO) as well as to verify the main barrier for CIS skin penetration. In vitro skin penetration of CIS was studied from propylene glycol (PG) solutions containing 0%, 5%, 10%, and 20% of MO using Franz-type diffusion cell and porcine ear skin. Pretreatment experiments with MO and experiments with skin without stratum corneum (SC) were also carried out. Skin penetration studies of CIS showed that the presence of MO doubled the drug permeation through the intact skin. However, permeation studies through the skin without SC caused only a small enhancement of CIS permeation compared to intact skin. Moreover, pretreatment of skin with MO formulations did not show any significant increase in the flux of the drug. In conclusion, MO did not act as a real penetration enhancer for CIS, but it increased the drug partition to the receptor solution improving CIS transdermal permeation. The absence of improvement in drug permeation by MO pretreatment and by the removal of SC indicates that the SC is not the main barrier for the permeation of the metal coordination compound. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, oral carcinoma cells were used to evaluate chloroaluminum-phthalocyanine encapsulated in liposomes as the photosensitizer agent in support of photodynamic therapy (PDT). The genotoxicity and cytotoxicity behavior of the encapsulated photosensitizer in both dark and under irradiation using the 670-nm laser were investigated with the classical trypan blue cell viability test, the acridine orange/ethidium bromide staining organelles test, micronucleus formation frequency, DNA fragmentation, and cell morphology. The cell morphology investigation was carried out using light and electronic microscopes. Our findings after PDT include reduction in cell viability (95%) associated with morphologic alterations. The neoplastic cell destruction was predominantly started by a necrotic process, according to the assay with acridine orange and ethidium bromide, and this was confirmed by electronic microscopy analysis. Neither the PDT agent nor laser irradiation alone showed cytotoxicity, genotoxicity, or even morphologic alterations. Our results reinforce the efficiency of tight-irradiated chloroaluminum-phthalocyanine in inducing a positive effect of PDT. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Photodynamic therapy requires a photosensitizer, oxygen, and activating light. For acne, pilosebaceous units are ""target"" structures. Porphyrins are synthesized in vivo from 5-aminolevulinic acid (ALA), particularly in pilosebaceous units. Different photosensitizers and drug delivery methods have been reported for acne treatment. There are a variety of porphyrin precursors with different pharmacokinetic properties. Among them, ALA and methyl-ester of ALA (MAT.) are available for possible off-label treatment of acne vulgaris. In addition, various light sources, light dosimetry, drug incubation time, and pre- and posttreatment care also change efficacy and side effects. None of these variables has been optimized for acne treatment, but a number of clinical trials provide helpful guidance. In this paper, we critically analyze clinical trials, case reports, and series of cases published through 2009. (J Am Acad Dermatol 2010;63:195-211.)
Resumo:
Pregnant women are particularly susceptible to toxic effects associated with lead (Pb) exposure. Pb accumulates in bone tissue and is rapidly mobilized from bones during pregnancy, thus resulting in fetal contamination. While vitamin D receptor (VDR) polymorphisms modify bone mineralization and affect Pb biomarkers including blood (Pb-B) and serum (Pb-S) Pb concentrations, and %Pb-S/Pb-B ratio, the effects of these polymorphisms on Pb levels in pregnant women are unknown. This study aimed at examining the effects of three (Fokl, Bsml and Apal) VDR polymorphisms (and VDR haplotypes) on Pb levels in pregnant women. Pb-B and Pb-S were determined by inductively coupled plasma mass spectrometry in samples from 256 healthy pregnant women and their respective umbilical cords. Genotypes for the VDR polymorphisms were determined by PCR and restriction fragment length digestion. While the three VDR polymorphisms had no significant effects on Pb-B, Pb-S or %Pb-S/Pb-B ratio, the haplotype combining the f, a, and b alleles for the Fokl, Apal and Bsml polymorphisms, respectively, was associated with significantly lower Pb-S and %Pb-S/Pb-B (P<0.05). However, maternal VDR haplotypes had no effects on Pb levels in the umbilical cords. To our knowledge, this is the first study showing that a combination of genetic polymorphisms (haplotype) commonly found in the VDR gene affects Pb-S and %Pb-S/Pb-B ratios in pregnant women. These findings may have major implications for Pb toxicity because they may help to predict the existence of a group of subjects that is genetically less prone to Pb toxicity during pregnancy. (C) 2010 Elsevier B.V. All rights reserved.