135 resultados para Amazon deforestation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using (15)N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO(3) (-)) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH(4) (+) uptake length, higher uptake rates into organic matter components and a shorter (15)NH(4) (+) residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added (15)NH(4) (+)) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added (15)N in organic matter compartments and exported 53% ((15)NH(4) (+) = 34%; (15)NO(3) (-) = 19%). In contrast, the second-order pasture stream retained 75% of added (15)N, predominantly in grasses (69%) and exported only 4% as (15)NH(4) (+). The fate of tracer (15)N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported ((15)NH(4) (+) = 9%; (15)NO(3) (-) = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deforestation in Brazilian Amazonia accounts for a disproportionate global scale fraction of both carbon emissions from biomass burning and biodiversity erosion through habitat loss. Here we use field- and remote-sensing data to examine the effects of private landholding size on the amount and type of forest cover retained within economically active rural properties in an aging southern Amazonian deforestation frontier. Data on both upland and riparian forest cover from a survey of 300 rural properties indicated that 49.4% (SD = 29.0%) of the total forest cover was maintained as of 2007. and that property size is a key regional-scale determinant of patterns of deforestation and land-use change. Small properties (<= 150 ha) retained a lower proportion of forest (20.7%, SD = 17.6) than did large properties (>150 ha; 55.6%, SD = 27.2). Generalized linear models showed that property size had a positive effect on remaining areas of both upland and total forest cover. Using a Landsat time-series, the age of first clear-cutting that could be mapped within the boundaries of each property had a negative effect on the proportion of upland, riparian, and total forest cover retained. Based on these data, we show contrasts in land-use strategies between smallholders and largeholders, as well as differences in compliance with legal requirements in relation to minimum forest cover set-asides within private landholdings. This suggests that property size structure must be explicitly considered in landscape-scale conservation planning initiatives guiding agro-pastoral frontier expansion into remaining areas of tropical forest. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazilian agriculture covers about one-third of the land area and is expected to expand further We assessed the compliance of present Brazilian agriculture with environmental legislation and identified challenges for agricultural development connected to this legislation We found (i) minor illegal land use in protected areas under public administration, (ii) a large deficit in legal reserves and protected riparian zones on private farmland, and large areas of unprotected natural vegetation in regions experiencing agriculture expansion Achieving full compliance with the environmental laws as they presently stand would require drastic changes in agricultural land use, where large agricultural areas are taken out of production and converted back to natural vegetation The outcome of a full compliance with environmental legislation might not be satisfactory due to leakage, where pristine unprotected areas become converted to compensate for lost production as current agricultural areas are reconverted to protected natural vegetation. Realizing the desired protection of biodiversity and natural vegetation, while expanding agriculture to meet food and biofuel demand, may require a new approach to environmental protection New legal and regulatory instruments and the establishment of alternative development models should be considered

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO(2) to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO(2). Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state`s 925 225 km(2), 221 092 km(2) have been converted to pastures and 89 533 km(2) have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with similar to 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil`s fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region`s carbon balance is the type of foundation analysis needed by the new United Nations Collaborative Programmme for Reducing Emissions from Deforestation and Forest Degradation (REDD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using remote sensing and develop a greenhouse gas emissions budget. The most common type of intensification in this region is a shift from single-to double-cropping patterns and associated changes in management, including increased fertilization. Using the enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the authors created a green-leaf phenology for 2001-06 that was temporally smoothed with a wavelet filter. The wavelet-smoothed green-leaf phenology was analyzed to detect cropland areas and their cropping patterns. The authors document cropland extensification and double-cropping intensification validated with field data with 85% accuracy for detecting croplands and 64% and 89% accuracy for detecting single-and double-cropping patterns, respectively. The results show that croplands more than doubled from 2001 to 2006 to cover about 100 000 km(2) and that new double-cropping intensification occurred on over 20% of croplands. Variations are seen in the annual rates of extensification and double-cropping intensification. Greenhouse gas emissions are estimated for the period 2001-06 due to conversion of natural vegetation and pastures to row-crop agriculture in Mato Grosso averaged 179 Tg CO(2)-e yr(-1),over half the typical fossil fuel emissions for the country in recent years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimates of greenhouse-gas emissions from deforestation are highly uncertain because of high variability in key parameters and because of the limited number of studies providing field measurements of these parameters. One such parameter is burning efficiency, which determines how much of the original forest`s aboveground carbon stock will be released in the burn, as well as how much will later be released by decay and how much will remain as charcoal. In this paper we examined the fate of biomass from a semideciduous tropical forest in the ""arc of deforestation,"" where clearing activity is concentrated along the southern edge of the Amazon forest. We estimated carbon content, charcoal formation and burning efficiency by direct measurements (cutting and weighing) and by line-intersect sampling (LIS) done along the axis of each plot before and after burning of felled vegetation. The total aboveground dry biomass found here (219.3 Mg ha(-1)) is lower than the values found in studies that have been done in other parts of the Amazon region. Values for burning efficiency (65%) and charcoal formation (6.0%, or 5.98 Mg C ha(-1)) were much higher than those found in past studies in tropical areas. The percentage of trunk biomass lost in burning (49%) was substantially higher than has been found in previous studies. This difference may be explained by the concentration of more stems in the smaller diameter classes and the low humidity of the fuel (the dry season was unusually long in 2007, the year of the burn). This study provides the first measurements of forest burning parameters for a group of forest types that is now undergoing rapid deforestation. The burning parameters estimated here indicate substantially higher burning efficiency than has been found in other Amazonian forest types. Quantification of burning efficiency is critical to estimates of trace-gas emissions from deforestation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flowpaths by which water moves from watersheds to streams has important consequences for the runoff dynamics and biogeochemistry of surface waters in the Amazon Basin. The clearing of Amazon forest to cattle pasture has the potential to change runoff sources to streams by shifting runoff to more surficial flow pathways. We applied end-member mixing analysis (EMMA) to 10 small watersheds throughout the Amazon in which solute composition of streamwater and groundwater, overland flow, soil solution, throughfall and rainwater were measured, largely as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia. We found a range in the extent to which streamwater samples fell within the mixing space determined by potential flowpath end-members, suggesting that some water sources to streams were not sampled. The contribution of overland flow as a source of stream flow was greater in pasture watersheds than in forest watersheds of comparable size. Increases in overland flow contribution to pasture streams ranged in some cases from 0% in forest to 27-28% in pasture and were broadly consistent with results from hydrometric sampling of Amazon forest and pasture watersheds that indicate 17- to 18-fold increase in the overland flow contribution to stream flow in pastures. In forest, overland flow was an important contribution to stream flow (45-57%) in ephemeral streams where flows were dominated by stormflow. Overland flow contribution to stream flow decreased in importance with increasing watershed area, from 21 to 57% in forest and 60-89% in pasture watersheds of less than 10 ha to 0% in forest and 27-28% in pastures in watersheds greater than 100 ha. Soil solution contributions to stream flow were similar across watershed area and groundwater inputs generally increased in proportion to decreases in overland flow. Application of EMMA across multiple watersheds indicated patterns across gradients of stream size and land cover that were consistent with patterns determined by detailed hydrometric sampling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical experiments with the Brazilian additions to the Regional Atmospheric Modeling System were performed with two nested grids (50 and 10 km horizontal resolution, respectively) with and without the effect of biomass burning for 8 different situations for 96 h integrations. Only the direct radiative effect of aerosols is considered. The results were analyzed in large areas encompassing the BR163 road (one of the main areas of deforestation in the Amazon). mainly where most of the burning takes place. The precipitation change due to the direct radiative impact of biomass burning is generally negative (i.e., there is a decrease of precipitation). However, there are a few cases with a positive impact. Two opposite forcing mechanisms were explored: (a) the thermodynamic forcing that is generally negative in the sense that the aerosol tends to stabilize the lower atmosphere and (b) the dynamic impact associated with the low level horizontal pressure gradients produced by the aerosol plumes. In order to understand the non-linear relationship between the two effects, experiments were performed with 4-fold emissions. In these cases, the dynamic effect overcomes the stabilization produced by the radiative forcing and precipitation increase is observed in comparison with the control experiment. This study suggests that. in general, the biomass burning radiative forcing decreases the precipitation. However, very large concentrations of aerosols may lead to an increase of precipitation due to the dynamical forcing associated with the horizontal pressure gradients. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the physical processes involved in the development of thunderstorms over southwestern Amazon by hypothesizing causalities for the observed cloud-to-ground lightning variability and the local environmental characteristics. Southwestern Amazon experiences every year a large variety of environmental factors, such as the gradual increase in atmospheric moisture, extremely high pollution due to biomass burning, and intense deforestation, which directly affects cloud development by differential surface energy partition. In the end of the dry period it was observed higher percentages of positive cloud-to-ground (+CG) lightning due to a relative increase in +CG dominated thunderstorms (positive thunderstorms). Positive (negative) thunderstorms initiated preferentially over deforested (forest) areas with higher (lower) cloud base heights, shallower (deeper) warm cloud depths, and higher (lower) convective potential available energy. These features characterized the positive (negative) thunderstorms as deeper (relatively shallower) clouds, stronger (relatively weaker) updrafts with enhanced (decreased) mixed and cold vertically integrated liquid. No significant difference between thunderstorms (negative and positive) and nonthunderstorms were observed in terms of atmospheric pollution, once the atmosphere was overwhelmed by pollution leading to an updraft-limited regime. However, in the wet season both negative and positive thunderstorms occurred during periods of relatively higher aerosol concentration and differentiated size distributions, suggesting an aerosol-limited regime where cloud electrification could be dependent on the aerosol concentration to suppress the warm and enhance the ice phase. The suggested causalities are consistent with the invoked hypotheses, but they are not observed facts; they are just hypotheses based on plausible physical mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A karyotype analysis of the electric eel, Electrophorus electricus (Teleostei, Gymnotiformes), a strongly electric fish from northern South America, is presented. Two female specimens were analyzed, one from the Amazon River and one from the Araguaia River. The specimens had a chromosomal number of 2n = 52 (42M-SM + 10A). C-bands were present in a centromeric and pericentromeric position on part of the chromosomes; some interstitial C-bands were also present. Heteromorphic nucleolus organizer regions (NORs) were detected in two chromosome pairs of the specimen from the Amazon River. The chromosome number and karyotype characteristics are similar to those of other Gymnotidae species. The genera Electrophorus and Gymnotus are positioned as the basal lineages in the Gymnotiformes phylogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pimelerodius punctiventris sp. nov. (type locality Brazil, Amazonas, Itacoatiara) is described and illustrated. The new taxon is compared with similar species, being distinguished from the other 12 known species of the genus by the presence of punctures in ventrite I. The available published key for identification of species of Pimelerodius is adapted to include the new species. A modification of the generic description of the aedeagus of Pimelerodius is provided, a necessity due to the differences observed in the aedeagus of the new species. The occurrence of P. motacilla (Boheman, 1843) in the Amazon Region, recorded in sympatry with P. punctiventris in Itacoatiara, AM, is discussed and confirmed, based on the study of 41 available specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new species of the relatively poorly known Neotropical freshwater stingray genus Plesiotrygon Rosa, Castello & Thorson, 1987 is described from the main channel and smaller tributaries (Ríos Itaya and Pachitea) of the upper Amazon basin in Peru. The first specimen to be collected, however, was from much farther east in Rio Solimões in 1996, just down-river from Rio Purus (specimen unavailable for this study). Plesiotrygon nana sp. nov., is a very distinctive and unusually small species of freshwater stingray (Potamotrygonidae), described here mostly from three specimens representing different size classes and stages of sexual maturity. Plesiotrygon nana sp. nov., is distinguished from its only congener, P. iwamae Rosa, Castello & Thorson, 1987, by numerous unique features, including: dorsal coloration composed of very fine rosettes or a combination of spots and irregular ocelli; very circular disc and snout; very small and less rhomboidal spiracles; short snout and anterior disc region; narrow mouth and nostrils; denticles on dorsal tail small, scattered, not forming row of enlarged spines; adult and preadult specimens with significantly fewer tooth rows; fewer caudal vertebrae; higher total pectoral radials; very small size, probably not surpassing 250 mm disc length or width, males maturing sexually at around 180 mm disc length and 175 mm disc width; distal coloration of tail posterior to caudal stings usually dark purplish-brown; and features of the ventral lateral-line canals (hyomandibular canal very narrow, infraorbital and supraorbital canals not undulated, supraorbital and infraorbital loops small and narrow, supraorbital loop very short, not extending posteriorly to level of mouth, jugular and posterior infraorbital canals short, not extending caudally to first gill slits, subpleural loop very narrow posteriorly; absence of anterior and posterior subpleural tubules). To provide a foundation for the description of P. nana sp. nov., morphological variation in P. iwamae was examined based on all type specimens as well as newly collected and previously unreported material. Two specimens topotypic with the male paratype of P. nana sp. nov., referred to here as Plesiotrygon cf. iwamae, are also reported. Relationships of the new species to P. iwamae are discussed; further characters indicative of Plesiotrygon monophyly are proposed, but the genus may still not be valid. Plesiotrygon nana sp. nov., is commercialized with some regularity in the international aquarium trade from Iquitos (Peru), an alarming circumstance because nothing is known of its biology or conservation requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of charcoal and of partially combusted organic waste to mimic the soil organic matter of the Terras Pretas de Índios (Amazonian Dark Earths) from the Amazon Region is discussed. These materials serve as soil conditioners and as sequesterers of carbon in recalcitrant and in reactive forms. Studies carried out by Brazilian and by international groups have contributed to the emergence of an awareness of the compositions and of the uses of these materials. In this contribution we report on chemical studies that are leading to the development of a scientific and technological awareness, and of innovations that will have value in finding novel uses in applications to soil of chars from organic wastes such as those from the biofuel industry, and from metallurgical and various coal plant residues.