30 resultados para Aisberg-2-2004A-1
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The environmental chemical 1,2-naphthoquinone (1,2-NQ) is implicated in the exacerbation of airways diseases induced by exposure to diesel exhaust particles (DEP), which involves a neurogenic-mediated mechanism. Plasma extravasation in trachea, main bronchus and lung was measured as the local (125)I-bovine albumin accumulation. RT-PCR quantification of TRPV1 and tachykinin (NK(1) and NK(2)) receptor gene expression were investigated in main bronchus. Intratracheal injection of DEP (1 and 5 mg/kg) or 1,2-NQ (35 and 100 nmol/kg) caused oedema in trachea and bronchus. 1,2-NQ markedly increased the DEP-induced responses in the rat airways in an additive rather than synergistic manner. This effect that was significantly reduced by L-732,138, an NK(1) receptor antagonist, and in a lesser extent by SR48968, an NK(2) antagonist. Neonatal capsaicin treatment also markedly reduced DEP and 1,2-NQ-induced oedema. Exposure to pollutants increased the TRPV1, NK(1) and NK(2) receptors gene expression in bronchus, an effect was partially suppressed by capsaicin treatment. In conclusion, our results are consistent with the hypothesis that DEP-induced airways oedema is highly influenced by increased ambient levels of 1,2-NQ and takes place by neurogenic mechanisms involving up-regulation of TRPV1 and tachykinin receptors.
Resumo:
Fabrication and electroluminescent properties of devices containing europium complexes of general formula [Eu(ACIND)(3)(TPPO)(2)], where ACIND, 2-acyl-1,3-indandionate ligands: and TPPO, triphenylphosphine oxide. as emitter layers are discussed. The double-layer devices based on these complexes present the following configurations: device 1: ITO/TPD/[Eu(AlND)(3)(TPPO)(2)]/Al: device 2: ITO/TPD/[Eu(ISOV-IND)(3)(TPPO)(2)]/Al and device 3: ITO/TPD/[Eu(BIND)(3)(TPPO)(2)]/Al, where AlND, 2-acetyl-1,3-indandionate; ISOVIND, 2-isovaleryl-1,3-indandionate; and BIND, 2-benzoyl-1,3-indandionate, respectively. These devices exhibited photo and electroluminescent emissions. An important characteristic presented by devices is that their electroluminescent (EL) spectra, in the region of (5)D(0) -> (7)F(J) (J = 0, 1, 2, 3 and 4) transitions of Eu(3+) ion, show profiles that are different from photoluminescent (PL) ones. In addition to narrow bands arising from intraconfigurational-4f(6) transitions, devices 1 and 2 also exhibited a broad band with maximum at around 500 nm which is assigned to electrophosphorescence from the indandionate ligands. On the other hand, EL spectra of device 3 present only narrow bands from (5)D(0) -> (7)F(J) transitions. [Eu(ACIND)(3)(TPPO)(2)] complexes are promising candidates to prepare efficient organic light-emitting devices (OLEDs) when compared with those containing Eu(3+)-complexes of aliphatic beta-diketonate anions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Asystematic study on the surface-enhanced Raman scattering (SERS) for 3,6-bi-2-pyridyl-1,2,4,5-tetrazine (bptz) adsorbed onto citrate-modified gold nanoparticles (cit-AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit-AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge-transfer (CT) effects. The most strongly enhanced vibrations belong to a(1) and b(2) representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
We tested if modulation in mRNA expression of cyclooxygenase isoforms (COX-1 and COX-2) can be related to protective effects of phototherapy in skeletal muscle. Thirty male Wistar rats were divided into five groups receiving either one of four laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation (904 nm, 15 mW average power) was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions. Immediately after sixth contraction, blood samples were collected to evaluate creatine kinase activity and muscles were dissected and frozen in liquid nitrogen to evaluate mRNA expression of COX-1 and COX-2. The 1.0 and 3.0 J groups showed significant enhancement (P < 0.01) in total work performed in six tetanic contractions compared with control group. All laser groups, except the 3.0 J group, presented significantly lower post-exercise CK activity than control group. Additionally, 1.0 J group showed increased COX-1 and decreased COX-2 mRNA expression compared with control group and 0.1, 0.3 and 3.0 J laser groups (P < 0.01). We conclude that pre-exercise infrared laser irradiation with dose of 1.0 J enhances skeletal muscle performance and decreases post-exercise skeletal muscle damage and inflammation.
Resumo:
Extracellular signal-regulated kinase (ERK) 1/2 has been reported to play a role in vascular dysfunction associated with mineralocorticoid hypertension. We hypothesized that, compared with female rats, an upregulation of ERK1/2 signaling in the vasculature of male rats contributes to augmented contractile responses in mineralocorticoid hypertension. Uninephrectomized male and female Sprague-Dawley rats received desoxycorticosterone acetate (DOCA) pellets (200 mg per animal) and saline to drink for 3 weeks. Control uninephrectomized rats received tap water to drink. Blood pressure, measured by telemetry, was significantly higher in male DOCA rats (191 +/- 3 mm Hg) compared with female DOCA rats (172 +/- 7 mm Hg; n=5). DOCA treatment resulted in augmented contractile responses to phenylephrine in aorta (22 +/- 3 mN; n=6) and small mesenteric arteries (13 +/- 2 mN; n=6) from male DOCA rats versus uninephrectomized male rats (16 +/- 3 and 10 +/- 2 mN, respectively; P<0.05) and female DOCA rats (15 +/- 1 and 11 +/- 1 mN, respectively). ERK1/2 inhibition with PD-98059 (10 mu mol/L) abrogated increased contraction to phenylephrine in aorta (14 +/- 2 mN) and small mesenteric arteries (10 +/- 2 mN) from male DOCA rats, without any effects in arteries from male uninephrectomized or female animals. Compared with the other groups, phosphorylated ERK1/2 levels were increased in the aorta from male DOCA rats, whereas mitogen-activated protein kinase phosphatase 1 expression was decreased. Interleukin-10 plasma levels, which positively regulate mitogen-activated protein kinase phosphatase 1 activity, were reduced in male DOCA-salt rats. We speculate that augmented vascular reactivity in male hypertensive rats is mediated via activation of the ERK1/2 pathway. In addition, mitogen-activated protein kinase phosphatase 1 and interleukin 10 play regulatory roles in this process. (Hypertension. 2010; 55: 172-179.)
Resumo:
Data obtained during routine diagnosis of human T-cell lymphotropic virus type 1 (HTLV-1) and 2 (HTLV-2) in ""at-risk"" individuals from Sao Paulo, Brazil using signal-to-cutoff (S/C) values obtained by first, second, and third generation enzyme immunoassay (EIA) kits, were compared. The highest S/C values were obtained with third generation EIA kits, but no correlation was detected between these values and specific antibody reactivity to HTLV-1, HTLV-2, or untyped HTLV (p = 0.302). In addition, use of these third generation kits resulted in HTLV-1/2 false-positive samples. In contrast, first and second generation EIA kits showed high specificity, and the second generation EIA kits showed the highest efficiency, despite lower S/C values. Using first and second generation EIA kits, significant differences in specific antibody detection of HTLV-1, relative to HTLV-2 (p = 0.019 for first generation and p < 0.001 for second generation EIA kits) and relative to untyped HTLV (p = 0.025 for first generation EIA kits), were observed. These results were explained by the composition and format of the assays. In addition, using receiver operating characteristics (ROC) analysis, a slight adjustment in cutoff values for third generation EIA kits improved their specificities and should be used when HTLV ""at-risk"" populations from this geographic area are to be evaluated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chlorocatechol 1,2-dioxygenase (1,2-CCD) is a non-heme iron protein involved in the intradiol cleavage of aromatic compounds that are recalcitrant to biodegradation. In particular, 1,2-CCD catalyzes the conversion of catechol and its halogenated derivatives to cis-cis muconic acid. In this study we describe a series of experiments concerning the interaction of chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp1,2-CCD) with cis-cis muconic acid. We used single-injection ITC to show that the reaction product inhibits enzyme kinetics. DSC and EPR measurements probed whether this was accomplished by a direct binding of the product to the enzyme active site. DSC shows that cis-cis muconic acid affects the thermal unfolding of the protein and allowed us to estimate a binding constant. Furthermore, EPR spectra of the Fe(III) center demonstrate that, upon product binding, a significant decrease in resonance intensity is observed, indicating that cis-cis muconic acid binds directly to the active site. Based on the increasing interest for understanding dioxygenases mechanism of action and, moreover, how to control such process, our data indicate that the product of the reaction does play a relevant role in the catalysis and should therefore be taken into account when one thinks about ways of regulating enzyme activity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Acetaldehyde is an environmentally widespread genotoxic aldehyde present in tobacco smoke, vehicle exhaust and several food products. Endogenously, acetaldehyde is produced by the metabolic oxidation of ethanol by hepatic NAD-dependent alcohol dehydrogenase and during threonine catabolism. The formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2`-deoxyguanosine in DNA to form primarily N(2)-ethylidene-2`-deoxyguanosine. The subsequent reaction of N(2)-ethylidenedGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2`-deoxyguanosine (1,N(2)-propanodGuo), an adduct also found as a product of the crotonaldehyde reaction with dGuo. However, adducts resulting from the reaction of more than one molecule of acetaldehyde in vivo are still controversial. In this study, the unequivocal formation of 1,N(2)-propanodGuo by acetaldehyde was assessed in human cells via treatment with [(13)C(2)]-acetaldehyde. Detection of labeled 1,N(2)-propanodGuo was performed by HPLC/MS/MS. Upon acetaldehyde exposure (703 mu M), increased levels of both 1,N(2)-etheno-2`-deoxyguanosine (1,N(2)-epsilon dGuo), which is produced from alpha,beta-unsaturated aldehydes formed during the lipid peroxidation process, and 1,N(2)-propanodGuo were observed. The unequivocal formation of 1,N(2)-propanodGuo in cells exposed to this aldehyde can be used to elucidate the mechanisms associated with acetaldehyde exposure and cancer risk.
Resumo:
Exocyclic DNA adducts produced by exogenous and endogenous compounds are emerging as potential tools to study a variety of human diseases and air pollution exposure. A highly sensitive method involving online reverse-phase high performance liquid chromatography with electrospray tandem mass spectrometry detection in the multiple reaction monitoring mode and employing stable isotope-labeled internal standards was developed for the simultaneous quantification of 1,N(2)-etheno-2`-deoxyguanosine (1,N(2)-epsilon dGuo) and 1,N(2)-propano-2`-deoxyguanosine (1,N(2)-propanodGuo) in DNA. This methodology permits direct online quantification of 2`-deoxyguanosine and ca. 500 amol of adducts in 100 mu g of hydrolyzed DNA M the same analysis. Using the newly developed technique, accurate determinations of 1,N(2)-etheno-2`-deoxyguanosine and 1,N2-propano-2`-deoxyguanosine levels in DNA extracts of human cultured cells (4.01 +/- 0.32 1,N(2)-epsilon dGuo/10(8) dGuo and 3.43 +/- 0.33 1,N(2)-propanodGuo/10(8) dGuo) and rat tissue (liver, 2.47 +/- 0.61 1,N(2)-epsilon dGuo/10(8) dGuo and 4.61 +/- 0.69 1,N(2)-propanodGuo/108 dGuo; brain, 2.96 +/- 1.43,N(2)-epsilon dGuo/10(8) dGuo and 5.66 +/- 3.70 1,N(2)-propanoclGuo/10(8) dGuo; and lung, 0,87 +/- 0.34 1,N(2)-edGuo/ 10(8) dGuo and 2.25 +/- 1.72 1,N(2)-propanodGuo/10(8) dGuo) were performed. The method described herein can be used to study the biological significance of exocyclic DNA adducts through the quantification of different adducts in humans and experimental an with pathological conditions and after air pollution exposure.
Resumo:
The presence of paramagnetic species in the aqueous ring opening metathesis polymerizations of the exo,exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomer with RuCl(3) and K(2)[RuCl(5)H(2)O] compounds was studied using ESR techniques. It was observed that the intensities of the Ru(III) signals in the ESR spectra decrease on the time scale of the induction period so that the ROMP can take place. The intensity of the Ru(III) signal almost disappeared 50 min after reacting with K(2)[RuCl(5)H(2)O] and after 100 mm in the case of RuCl(3). Reactions of the cis-[Ru(NH(3))(4)(H(2)O)(2)](tfms)(3) and [Ru(NH(3))(5)H(2)O](tfms)(3) complexes with the monomer and different organic compounds representing the organic functions in the monomer (furan, norbornene, but-2-ene-1,4-diol and formic, acetic, oxalic and maleic acids) were also monitored by ESR and UV/vis spectra. It was deduced that the organic acids provide the disappearance of the Ru(III) signal. The proton NMR relaxation times of the residual water in D(2)O for reactions with oxalic acid suggested that the presence of paramagnetic ions in the solution decreases along with
Resumo:
The yeast 20S proteasome is subject to sulfhydryl redox alterations, such as the oxidation of cysteine residues (Cys-SH) into cysteine sulfenic acid (Cys-SOH), followed by S-glutathionylation (Cys-S-SG). Proteasome S-glutathionylation promotes partial loss of chymotrypsin-like activity and post-acidic cleavage without alteration of the trypsin-like proteasomal activity. Here we show that the 20S proteasome purified from stationary-phase cells was natively S-glutathionylated. Moreover, recombinant glutaredoxin 2 removes glutathione from natively or in vitro S-glutathionylated 20S proteasome, allowing the recovery of chymotrypsin-like activity and post-acidic cleavage. Glutaredoxin 2 deglutathionylase activity was dependent on its entry into the core particle, as demonstrated by stimulating S-glutathionylated proteasome opening. Under these conditions, deglutathionylation of the 20S proteasome and glutaredoxin 2 degradation were increased when compared to non-stimulated samples. Glutaredoxin 2 fragmentation by the 20S proteasome was evaluated by SDS-PAGE and mass spectrometry, and S-glutathionylation was evaluated by either western blot analyses with anti-glutathione IgG or by spectrophotometry with the thiol reactant 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. It was also observed in vivo that glutaredoxin 2 was ubiquitinated in cellular extracts of yeast cells grown in glucose-containing medium. Other cytoplasmic oxido-reductases, namely thioredoxins 1 and 2, were also active in 20S proteasome deglutathionylation by a similar mechanism. These results indicate for the first time that 20S proteasome cysteinyl redox modification is a regulated mechanism coupled to enzymatic deglutathionylase activity.
Resumo:
Corticotropin-releasing factor (CRF) is expressed in the paraventricular nucleus of the hypothalamus (PVN), and act centrally to provoke stress-like autonomic and behavioral responses. Urocortins 1-3 are additional ligands to the CRF receptors 1 and 2. Ucn 1 neurons are primarily concentrated in the Edinger-Westphal (EW) nucleus and also have been associated with stress responses. It is also known that UCN 1 respond in different ways depending on the stressor presented. Benzodiazepines can act via the CRF peptidergic system and chronic administration of alprazolam does not interfere with CRF mRNA expression in the PVN, but significantly increase Ucn 1 mRNA expression in the EW. The aim of our study was to investigate the relationship between different stressor stimuli, foot shock (FS) and restraint (R), and the mRNA expression of CRF and Ucn 1 in the PVN and EW using alprazolam (A). We employed fos activation and in situ hybridization. Restraint group presented increased fos-ir and CRF mRNA expression in the PVN compared to FS group. The stress responses of R group were prevented by A. In the EW,fos-ir was higher in the FS group than in the R group, whereas Ucn 1 mRNA expression was higher in the R group than in the FS group. Alprazolam significantly increased fos-ir and Ucn 1 mRNA expression in both groups. Our results show that PVN and EW respond in different ways to the same stressors. Furthermore, EW of stressed animals replies in a complementary way comparing to PVN with the use of Alprazolam. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS-C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes. Diabetes 59:1192-1201, 2010
Resumo:
Disturbances in the regulation of cytosolic calcium (Ca(2+)) concentration play a key role in the vascular dysfunction associated with arterial hypertension. Stromal interaction molecules (STIMs) and Orai proteins represent a novel mechanism to control store-operated Ca(2+) entry. Although STIMs act as Ca(2+) sensors for the intracellular Ca(2+) stores, Orai is the putative pore-forming component of Ca(2+) release-activated Ca(2+) channels at the plasma membrane. We hypothesized that augmented activation of Ca(2+) release-activated Ca(2+)/Orai-1, through enhanced activity of STIM-1, plays a role in increased basal tonus and vascular reactivity in hypertensive animals. Endothelium-denuded aortic rings from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats were used to evaluate contractions because of Ca(2+) influx. Depletion of intracellular Ca(2+) stores, which induces Ca(2+) release-activated Ca(2+) activation, was performed by placing arteries in Ca(2+) free-EGTA buffer. The addition of the Ca(2+) regular buffer produced greater contractions in aortas from stroke-prone spontaneously hypertensive rats versus Wistar-Kyoto rats. Thapsigargin (10 mu mol/L), an inhibitor of the sarcoplasmic reticulum Ca(2+) ATPase, further increased these contractions, especially in stroke-prone spontaneously hypertensive rat aorta. Addition of the Ca(2+) release-activated Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borate (100 mu mol/L) or gadolinium (100 mu mol/L), as well as neutralizing antibodies to STIM-1 or Orai-1, abolished thapsigargin-increased contraction and the differences in spontaneous tone between the groups. Expression of Orai-1 and STIM-1 proteins was increased in aorta from stroke-prone spontaneously hypertensive rats when compared with Wistar-Kyoto rats. These results support the hypothesis that both Orai-1 and STIM-1 contribute to abnormal vascular function in hypertension. Augmented activation of STIM-1/Orai-1 may represent the mechanism that leads to impaired control of intracellular Ca(2+) levels in hypertension. (Hypertension. 2009; 53[part 2]: 409-416.)