8 resultados para Agroecossistemas de mata de pinus
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A redução da disponibilidade de espécies de madeiras nativas e seus efeitos na economia, associada ao fortalecimento dos conceitos de preservação ambiental, criou a necessidade de desenvolvimento de alternativas viáveis para utilização racional de espécies de reflorestamento. E uma das opções é a realização de classificação visual das peças. Autores de trabalhos desenvolvidos nessa linha de pesquisa verificaram a adequação das regras de classificação visual do Southern Pine Inspection Bureau (SPIB) dos EUA à madeira de Pinus do Brasil e apresentaram proposta para normalizar o processo de classificação visual dessa madeira. Nessa classificação, os aspectos com maior influência são: presença de nós, desvio de grã em relação ao eixo da peça e densidade de anéis de crescimento. Assim, esta pesquisa apresenta um estudo experimental que consistiu na classificação visual e determinação da resistência à tração de 85 peças de Pinus spp e um estudo teórico, que propôs uma equação para determinar a resistência à tração média de peças estruturais em função da classificação visual. Com este trabalho, foi possível observar a influência dos nós e dos anéis de crescimento sobre a resistência à tração das peças analisadas.
Resumo:
A Mata Atlântica é um dos ambientes mais ricos e ameaçados do mundo, o que deveria ter estimulado em muito o estudo e a conservação do Bioma, mas a fauna de Hymenoptera permanece ainda relativamente pouco conhecida. Em especial, a fauna de abelhas da floresta ombrófila densa é pouco estudada em comparação à fauna das áreas abertas brasileiras. O projeto temático "Biodiversidade de Hymenoptera e Isoptera: riqueza e diversidade ao longo de um gradiente latitudinal na Mata Atlântica - a floresta úmida do leste do Brasil", integrante do Programa Biota-Fapesp, foi idealizado com o objetivo de catalogar térmitas, formigas e famílias selecionadas de vespas ao longo da Mata Atlântica, disponibilizando dados que permitam melhor embasar a conservação deste bioma. O protocolo de amostragem aplicada para a coleta de himenópteros (excluindo as formigas) empregou armadilhas Malaise, pratos-armadilha de cor amarela e esforço similar na varredura de vegetação ao longo de 17 localidades selecionadas, representando um gradiente de quase 20° de latitude na Mata Atlântica, dos Estados da Paraíba até Santa Catarina. Este protocolo foi definido para otimizar a coleta de vespas, sendo as abelhas um produto secundário da amostragem (levantamentos de abelhas em geral utilizam captura em flores ao longo das estações do ano). No entanto, devido à escala regional do projeto e ao grande esforço de amostragem, uma expressiva quantidade de abelhas foi coletada durante o projeto, incluindo novos registros de abelhas para a Mata Atlântica. Foi amostrado um total de 797 espécimes distribuídos em 105 espécies de abelhas; o grupo de abelhas mais rico e abundante foi Meliponina. Uma análise de correspondência "destendenciada" ('detrended correspondence analysis') aplicada à uma matriz de presença ou ausência de Meliponina revela a relativamente fraca influência do gradiente latitudinal na composição das assembléias de abelhas de Mata Atlântica. Uma listagem das espécies amostradas por localidade, com suas freqüências relativas, é apresentada e discutida.
Resumo:
Ceriporiopsis subvermispora is a promising white-rot fungus for biopulping. However, the underlying biochemistry involved in lignin removal and insignificant cellulose degradation by this species is not completely understood. This paper addresses this topic focusing on the involvement of ethanol-soluble extractives and wood transformation products in the biodegradation process. Cultures containing ethanol-extracted or in natura wood chips presented similar levels of extracellular enzymes and degradation of wood components. Fe3+-reducing compounds present in undecayed Pinus taeda were rapidly diminished by fungal degradation. Lignin-degradation products released during biodegradation restored part of the Fe3+-reducing activity. However, Fe3+ reduction was ineffective in presence of 0.5 mM oxalate at pH 4.5. Fungal consumption of Fe3+-reducing compounds and secretion of oxalic acid minimized the significance of Fenton`s reaction in the initial stages of wood biotreatment. This would explain limited polysaccharide degradation by the fungus that also lacks a complete set of hydrolytic enzymes. Scientific relevance of the paper: Ceriporiopsis subvermispora is a white-rot fungus suitable for biopulping processes because it degrades lignin selectively and causes significant structural changes on the wood components during the earlier decay stages. However, the intricate mechanism to explain lignin transformation and insignificant cellulose degradation by this species remains poorly understood. Some recent evidences pointed out for lipid peroxidation reactions as all initiating process explaining lignin degradation. On the other hand, alkylitaconic acids produced by the fungus via transformations of fatty acids occurring in wood showed to prevent polysaccharide degradation in Fenton reactions. In this context, one may conclude that the involvement of native wood substances or their transformation products in the overall wood biodegradation process induced by C subvermispora is still a matter of discussion. While free and esterified fatty acids present in wood extractives may be involved in the biosynthesis of alkylitaconic acids and in lipid peroxidation reactions, some extractives and lignin degradation products can reduce Fe3+, providing Fe2+ species needed to form OH radical via Fenton`s reaction. The present study focuses on this topic by evaluating the relevance of ethanol-soluble extractives and wood transformation products on the biodegradation of P. taeda by C subvermispora. For this, solid-state cultures containing ethanol-extracted and in natura wood chips were evaluated in details for up to 4 weeks. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Pinus taeda wood chips were treated with the biopulping fungus Ceriporiopsis subvermispora in soybean-oil-amended cultures The secretion of oxalic acid and the accumulation of thiobarbituric acid reactive substances were significantly increased in soybean-oil-amended cultures By contrast the secretion of hydrolytic and oxidative enzymes was not altered in the cultures Biotreated wood samples were characterized for weight and component losses as well as by in-situ thioacidolysis Residual lignins were also extracted from biotreated wood using a mild-non-razing extraction procedure The lignins were characterized by (31)P nuclear magnetic resonance ((31)P-NMR) spectroscopy Soybean oil amendment in the cultures was found to affect lignin degradation routes however it inhibited depolymerization reactions detectable in the residual lignin that was retained in the biotreated wood As a consequence chemithermomechanical pulping of the biotreated samples was not improved by soybean oil amendment in the cultures Crown Copyright (C) 2010 Published by Elsevier Ltd All rights reserved
Resumo:
The liquid and gas phase permeability, of Brazilian Pinus elliotii was studied with a custom built gas and liquid flow rate analysis chamber. The longitudinal gas phase permeability is shown to be six times greater than the radial permeability. There is no statistically significant difference between the longitudinal permeability of water versus wood preservative. Scanning Electron Microscopy (SEM) images confirm that the reported permeability properties arc due to the wood itself rather than to blocked pores or other artifacts of the sample cutting process. Wood composition analysis shows that the samples of Pinus elliotii grown in Brazil are similar to other species of Pinus grown in tropical climates. Specifically, the Pinus elliotti in this study is composed of 17% extractives, 0,27% ashes, 21% hemicellulose, 45% cellulose and 30% lignin. Results arc discussed in the context of the continued search for effective wood preservatives for use in tropical climates.
Resumo:
This work aimed to determining the anatomical structure of wood, through methodology of histology and X-ray densitometry, of resin-tapped and not resin-tapped Pinus caribaea var. hondurensis trees samples, of three diameter classes. Pine trees, in forest plantation established in 1969, in the Ecological Experimental Station of Itirapina, from the Forestry Institute of Sao Paulo State, were measured and stratified into three classes of trunk diameter. The pine trees were resin-tapped since 2004, with the opening of two simultaneous and opposing panels. Sixty samples of pine wood trees were extracted from the tree trunk through a non-destructive method and in the laboratory. Tree rings were determined in the laboratory and wood apparent density by X-ray densitometry. The test results showed that: (i) false tree rings occur in the early wood and late wood of the tree rings due to climate change; (ii) the X-ray densitometry allowed the demarcation of the tree rings limits; (iii) the wood apparent density average was significantly different between the trees in high class diameter and in the medium-low class; (iv) the wood characteristics from the resin-tapped and non resin-tapped faces did not show significant differences.
Resumo:
This study aimed at evaluating the mechanical, physical and biological properties of laminated veneer lumber (LVL) made from Pinus oocarpa Schiede ex Schltdl (PO) and Pinus kesiya Royle ex Gordon (PK) and at providing a nondestructive characterization thereof. Four PO and four PK LVL boards from 22 randomly selected 2-mm thickness veneers were produced according to the following characteristics: phenol-formaldehyde (190 g/m(2)), hot-pressing at 150A degrees C for 45 min and 2.8 N/mm(2) of specific pressure. After board production, nondestructive evaluation was conducted, and stress wave velocity (v (0)) and dynamic modulus of elasticity (E (Md) ) were determined. The following mechanical and physical properties were then evaluated: static bending modulus of elasticity (E (M) ), modulus of rupture (f (M) ), compression strength parallel to grain (f (c,0)), shear strength parallel to glue-line (f (v,0)), shear strength perpendicular to glue-line (f (v,90)), thickness swelling (TS), water absorption (WA), and permanent thickness swelling (PTS) for 2, 24, and 96-hour of water immersion. Biological property was also evaluated by measuring the weight loss by Trametes versicolor (Linnaeus ex Fries) Pilat (white-rot) and Gloeophyllum trabeum (Persoon ex Fries.) Murrill (brown-rot). After hot-pressing, no bubbles, delamination nor warping were observed for both species. In general, PK boards presented higher mechanical properties: E (M) , E (Md) , f (M) , f (c,0) whereas PO boards were dimensionally more stable, with lower values of WA, TS and PTS in the 2, 24, and 96-hour immersion periods. Board density, f (v,0), f (v,90) and rot weight loss were statistically equal for PO and PK LVL. The prediction of flexural properties of consolidated LVL by the nondestructive method used was not very efficient, and the fitted models presented lower predictability.
Resumo:
This study investigated the influence of heat treatment on the chemical composition of Eucalyptus saligna and Pinus caribaea var. hondurensis woods to understand its role in wood processing. E. saligna and P. caribaea var. hondurensis woods were treated in a laboratorial electric furnace at 120, 140, 160 and 180 degrees C to induce their heat treatment. The chemical composition of the resulting products and those from original wood were determined by gas chromatography. Eucalyptus and Pinus showed a significant reduction in arabinose, manose, galactose and xylose contents when submitted to increasing temperatures. No significant alteration in glucose content was observed. Lignin content, however, increased during the heat process. There was a significant reduction in extractive content for Eucalyptus. On the other hand, a slight increase in extractive content has been determined for the Pinus wood. and that only for the highest temperature. These different behaviors can be explained by differences in chemical constituents between softwoods and hardwoods. The results obtained in this study provide important information for future research and utilization of thermally modified wood. (c) 2008 Elsevier Ltd. All rights reserved.