5 resultados para Adrenergic beta-Antagonists

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Rodrigues SF, Tran ED, Fortes ZB, Schmid-Schonbein GW. Matrix metalloproteinases cleave the beta(2)-adrenergic receptor in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 299: H25-H35, 2010. First published April 9, 2010; doi:10.1152/ajpheart.00620.2009.-We recently observed the enhanced serine and matrix metalloproteinase (MMP) activity in the spontaneously hypertensive rat (SHR) compared with its normotensive Wistar-Kyoto (WKY) rat and the cleavage of membrane receptors in the SHR by MMPs. We demonstrate in vivo that MMP-7 and MMP-9 injection leads to a vasoconstrictor response in microvessels of rats that is blocked by a specific MMP inhibitor (GM-6001, 1 mu M). Multiple pathways may be responsible. Since the beta(2)-adrenergic receptor (beta(2)-AR) is susceptible to the action of endogenous MMPs, we hypothesize that MMPs in the plasma of SHRs are able to cleave the extracellular domain of the beta(2)-AR. SHR arterioles respond in an attenuated fashion to beta(2)-AR agonists and antagonists. Aorta and heart muscle of control Wistar rats were exposed for 24 h (37 C) to fresh plasma of male Wistar and WKY rats and SHRs with and without doxycycline (30 mu M) and EDTA (10 mM) to reduce MMP activity. The density of extracellular and intracellular domains of beta(2)-AR was determined by immunohistochemistry. The density of the extracellular domain of beta(2)-AR is reduced in aortic endothelial cells and cardiac microvessels of SHRs compared with that of WKY or Wistar rats. Treatment of the aorta and the heart of control Wistar rats with plasma from SHRs, but not from WKY rats, reduced the number of extracellular domains, but not intracellular domains, of beta(2)-AR in aortic endothelial cells and cardiac microvessels. MMP inhibitors (EDTA and doxycycline) prevented the cleavage of the extracellular domain. Thus MMPs may contribute to the reduced density of the extracellular domain of beta(2)-AR in blood vessels and to the increased arteriolar tone of SHRs compared with normotensive rats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, we investigated the role of noradrenergic transmission in unconditioned and conditioned responses to predatory threats. First, we examined the effects of systemically injected beta-blockers on unconditioned and contextual conditioned response to cat odor. The centrally acting beta-blocker (propranolol) was able to impair unconditioned responses, as well as the acquisition of the contextual fear to cat odor; however, the peripherally acting (nadolol) was not effective. Next, we examined the neural substrate underlying the noradrenergic modulation of the defensive response to cat odor and focused on the dorsal premammillary nucleus (PMd), because it represents the hypothalamic site most responsive to predatory threats and, at the same time, presents a dense plexus of noradrenergic fibers. We were able to see that propranolol significantly reduced PMd-Fos expression in response to cat odor and that beta-adrenoceptor blockade in the PMd, before cat odor exposure, reduced defensive responses to the cat odor and to the cat odor-related environment. We have also shown that beta-adrenoceptor blockade in the PMd, before the exposure to cat odor-related context, impaired the contextual conditioned responses. Overall, the present results provide convincing evidence suggesting that central noradrenergic mediation is critical for the expression of unconditioned and contextual conditioned antipredatory responses. We have further shown that the PMd appears to be an important locus to mediate these beta-adrenoceptor effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucose transporter 4 (GLUT4) expression in adipose tissue decreases during fasting. In skeletal muscle, we hypothesized that GLUT4 expression might be maintained in a beta-adrenergic-dependent way to ensure energy disposal for contractile function. Herein we investigate beta-blockade or beta-stimulation effects on GLUT4 expression in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscles of fasted rats. Fasting increased GLUT4 mRNA in soleus (24%) and EDL (40%) but the protein content increased only in soleus (30%). beta 1-beta 2-, and beta 1-beta 2-beta 3-blockade decreased (20-30%) GLUT4 mRNA content in both muscles, although GLUT4 protein decreased only in EDL. When mRNA and GLUT4 protein regulations were discrepant, changes in the mRNA poly(A) tail length were detected, indicating a posttranscriptional modulation of gene expression. These results show that beta-adrenergic activity regulates GLUT4 gene expression in skeletal muscle during fasting, highlighting its participation in preservation of GLUT4 protein in glycolytic muscle. Muscle Nerve 40: 847-854, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; beta-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of beta-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (beta-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd beta-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning. Neuropsychopharmacology (2011) 36, 926-939; doi:10.1038/npp.2010.231; published online 5 January 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study the effects of bradykinin receptor antagonists were investigated in a murine model of asthma using BALB/c mice immunized with ovalbumin/alum and challenged twice with aerosolized ovalbumin. Twenty four hours later eosinophil proliferation in the bone marrow, activation (lipid bodies formation), migration to lung parenchyma and airways and the contents of the pro-angiogenic and pro-fibrotic cytokines TGF-beta and VEGF were determined. The antagonists of the constitutive B(2) (HOE 140) and inducible B(1) (R954) receptors were administered intraperitoneally 30 min before each challenge. In sensitized mice, the antigen challenge induced eosinophil proliferation in the bone marrow, their migration into the lungs and increased the number of lipid bodies in these cells. These events were reduced by treatment of the mice with the B(1) receptor antagonist. The B(2) antagonist increased the number of eosinophils and lipid bodies in the airways without affecting eosinophil counts in the other compartments. After challenge the airway levels of VEGF and TGF-beta significantly increased and the B(1) receptor antagonist caused a further increase. By immunohistochemistry techniques TGF-beta was found to be expressed in the muscular layer of small blood vessels and VEGF in bronchial epithelial cells. The B(1) receptors were expressed in the endothelial cells. These results showed that in a murine model of asthma the B(1) receptor antagonist has an inhibitory effect on eosinophils in selected compartments and increases the production of cytokines involved in tissue repair. It remains to be determined whether this effects of the B(1) antagonist would modify the progression of the allergic inflammation towards resolution or rather towards fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.