14 resultados para Adjoint discrete ordinates
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
To date, there has been only one in vitro study of the relationship between neuropeptide EI (NEI) and the hypothalamic-pituitary-thyroid (HPT) axis. To investigate the possible relationship between NEI and the HPT axis, we developed a rat model of hypothyroidism and hyperthyroidism that allows us to determine whether NEI content is altered in selected brain areas after treatment, as well as whether such alterations are related to the time of day. Hypothyroidism and hyperthyroidism, induced in male rats, with 6-propyl-1-thiouracil and L-thyroxine, respectively, were confirmed by determination of triiodothyronine, total thyroxine, and thyrotropin levels. All groups were studied at the morning and the afternoon. In rats with hypothyroidism, NEI concentration, evaluated on postinduction days 7 and 24, was unchanged or slightly elevated on day 7 but was decreased on day 24. In rats with hyperthyroidism, NEI content, which was evaluated after 4 days of L-thyroxine administration, was slightly elevated, principally in the preoptic area in the morning and in the median eminence-arcuate nucleus and pineal gland in the afternoon, the morning and afternoon NEI contents being similar in the controls. These results provide the bases to pursue the study of the interaction between NEI and the HPT axis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Traditional retinal projections target three functionally complementary systems it) the brain of mammals: the primary visual system, the visuomotor integration systems and the circadian timing system. In recent years, studies in several animals have been conducted to investigate the retinal projections to these three systems, despite some evidence of additional targets. The aim of this study was to disclose a previously unknown connection between the retina and the parabrachial complex of the common marmoset, by means of the intraocular injection of cholera toxin Subunit b. A few labeled retinal fibers/terminals that are detected in the medial parabrachial portion of the marmoset brain show clear varicosities, Suggesting terminal fields. Although the possible role of these projections remains unknown, they may provide a modulation of the cholinergic parabrachial neurons which project to the thalamic dorsal lateral geniculate nucleus. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this series of papers, we study issues related to the synchronization of two coupled chaotic discrete systems arising from secured communication. The first part deals with uniform dissipativeness with respect to parameter variation via the Liapunov direct method. We obtain uniform estimates of the global attractor for a general discrete nonautonomous system, that yields a uniform invariance principle in the autonomous case. The Liapunov function is allowed to have positive derivative along solutions of the system inside a bounded set, and this reduces substantially the difficulty of constructing a Liapunov function for a given system. In particular, we develop an approach that incorporates the classical Lagrange multiplier into the Liapunov function method to naturally extend those Liapunov functions from continuous dynamical system to their discretizations, so that the corresponding uniform dispativeness results are valid when the step size of the discretization is small. Applications to the discretized Lorenz system and the discretization of a time-periodic chaotic system are given to illustrate the general results. We also show how to obtain uniform estimation of attractors for parametrized linear stable systems with nonlinear perturbation.
Resumo:
The absorption spectrum of the acid form of pterin in water was investigated theoretically. Different procedures using continuum, discrete, and explicit models were used to include the solvation effect on the absorption spectrum, characterized by two bands. The discrete and explicit models used Monte Carlo simulation to generate the liquid structure and time-dependent density functional theory (B3LYP/6-31G+(d)) to obtain the excitation energies. The discrete model failed to give the correct qualitative effect on the second absorption band. The continuum model, in turn, has given a correct qualitative picture and a semiquantitative description. The explicit use of 29 solvent molecules, forming a hydration shell of 6 angstrom, embedded in the electrostatic field of the remaining solvent molecules, gives absorption transitions at 3.67 and 4.59 eV in excellent agreement with the S(0)-S(1) and S(0)-S(2) absorption bands at of 3.66 and 4.59 eV, respectively, that characterize the experimental spectrum of pterin in water environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2371-2377, 2010
Resumo:
We address the effect of solvation on the lowest electronic excitation energy of camphor. The solvents considered represent a large variation in-solvent polarity. We consider three conceptually different ways of accounting for the solvent using either an implicit, a discrete or an explicit solvation model. The solvatochromic shifts in polar solvents are found to be in good agreement with the experimental data for all three solvent models. However, both the implicit and discrete solvation models are less successful in predicting solvatochromic shifts for solvents of low polarity. The results presented suggest the importance of using explicit solvent molecules in the case of nonpolar solvents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper completes the review of the theory of self-adjoint extensions of symmetric operators for physicists as a basis for constructing quantum-mechanical observables. It contains a comparative presentation of the well-known methods and a newly proposed method for constructing ordinary self-adjoint differential operators associated with self-adjoint differential expressions in terms of self-adjoint boundary conditions. The new method has the advantage that it does not require explicitly evaluating deficient subspaces and deficiency indices (these latter are determined in passing) and that boundary conditions are of explicit character irrespective of the singularity of a differential expression. General assertions and constructions are illustrated by examples of well-known quantum-mechanical operators like momentum and Hamiltonian.
Resumo:
In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential alpha x(-2). Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some `paradoxes` inherent in the `naive` quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.
Resumo:
We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x) = g(1)x(-1) + g(2)x(-2), x is an element of R(+) = [0, infinity). For g(2) > 0 and g(1) < 0, the potential is known as the Kratzer potential V(K)(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein`s method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.
Resumo:
In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we introduce a semi-parametric Bayesian approach based on Dirichlet process priors for the discrete calibration problem in binomial regression models. An interesting topic is the dosimetry problem related to the dose-response model. A hierarchical formulation is provided so that a Markov chain Monte Carlo approach is developed. The methodology is applied to simulated and real data.
Resumo:
This article presents important properties of standard discrete distributions and its conjugate densities. The Bernoulli and Poisson processes are described as generators of such discrete models. A characterization of distributions by mixtures is also introduced. This article adopts a novel singular notation and representation. Singular representations are unusual in statistical texts. Nevertheless, the singular notation makes it simpler to extend and generalize theoretical results and greatly facilitates numerical and computational implementation.
Resumo:
A neighbourhood assignment in a space X is a family O = {O-x: x is an element of X} of open subsets of X such that X is an element of O-x for any x is an element of X. A set Y subset of X is a kernel of O if O(Y) = U{O-x: x is an element of Y} = X. We obtain some new results concerning dually discrete spaces, being those spaces for which every neighbourhood assignment has a discrete kernel. This is a strictly larger class than the class of D-spaces of [E.K. van Douwen, W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (2) (1979) 371-377]. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We construct some examples using trees. Some of them are consistent counterexamples for the discrete reflection of certain topological properties. All the properties dealt with here were already known to be non-discretely reflexive if we assume CH and we show that the same is true assuming the existence of a Suslin tree. In some cases we actually get some ZFC results. We construct also, using a Suslin tree, a compact space that is pseudo-radial but it is not discretely generated. With a similar construction, but using an Aronszajn tree, we present a ZFC space that is first countable, omega-bounded but is not strongly w-bounded, answering a question of Peter Nyikos. (C) 2008 Elsevier B.V. All rights reserved.