3 resultados para Active Layer Detachments

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we describe the electrosynthesis of poly[(2-bromo-5-hexyloxy- 1,4-phenylenevinylene)-co-(1,4-phenylenevinylene)] (BHPPV-co-PPV), a novel conducting copolymer, and its application as active layer of a chemiresistive gas sensor suitable for quantification of ethanol present in ethanol-gasoline mixtures normally present in the fuel tanks of flex-fuel vehicles. This information is crucial for the smooth operation of the engine since it permits optimal air:fuel ratio regulation. The sensor consists of an interdigitated electrode coated with a thin polymer film doped with dodecylbenzenesulfonic acid. On exposure to fuel vapours at room temperature, the device presents a linear correlation between its electrical conductance and the ethanol concentration in the fuel. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The borohydride oxidation reaction (BOR) was studied on Pt and Au electrodes by cyclic voltammetry in dilute alkaline borohydride solutions (0.1 M NaOH + 10(-3) mol L(-1) NaBH(4)). More specifically, the electrodes were considered as either Vulcan XC72-supported Pt or Au (noted as Pt/C and Au/C, respectively) active layers or smooth Pt or Au surfaces, the latter possibly being covered by a layer of (non-metalized) Vulcan XC72 carbon powder. The BOR onset potential and the number of electrons (n(e-)) exchanged per BH(4)(-) anion (faradaic efficiency) were investigated for these electrodes, to determine whether the residence time of reaction intermediates (at the electrode surface or inside the porous layer) does influence the overall reaction pathway/completion. For the carbon-supported platinum, n(e-) strongly depends on the thickness of the active layer. While thin (ca. 0.5 mu m-thick) Pt/C active layers yield n(e-) < 4, thick layers (approximately 3 mu m) yield n(e-)approximate to 8, which can be ascribed to the sufficient residence time of the molecules formed within the active layer (H(2), by heterogeneous hydrolysis, or BOR intermediates) enabling further (near-complete) oxidation. This puts into evidence that not only the nature of the electrocatalyst is important to reach high BOR efficiency, but also the structure/thickness of the active layer. The same trend applies for Au/C active layers and for smooth Pt or Au surfaces covered with a layer of (inactive) Vulcan XC72. In addition, the BOR onset usually shifts negative when the reaction intermediates are trapped, which suggests that some of the intermediates are more easily oxidized than BH(4)(-) itself; based on literature data, BH(3)OH(-) species is a likely candidate. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes have been applied to many fields as nanocarriers, especially in drug delivery as active molecules may be entrapped either in their aqueous interior or onto the hydrophobic surface. In this paper we describe the fabrication of layer-by-layer (LbL) films made with liposomes incorporating the anti-inflammatory ibuprofen. The liposomes were made with dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl glycerol (DPPG) and palmitoyl oleoyl phosphatidyl glycerol (POPG). LbL films were assembled via alternate adsorption of the polyamidoamine dendrimer (PAMAM), generation 4, and liposomes containing ibuprofen. According to dynamic light scattering measurements, the incorporation of ibuprofen caused DPPC and DPPG liposonnes to become more stable, with a decrease in diameter from 140 to 74 nm and 132 to 63 nm, respectively. In contrast, liposomes from POPG became less stable, with an increase in size from 110 to 160 nm after ibuprofen incorporation. These results were confirmed by atomic force microscopy images of LbL films, which showed a large tendency to rupture for POPG liposomes. Film growth was monitored using nanogravimetry and UV-Vis spectroscopy, indicating that growth stops after 10 bilayers. The release of ibuprofen obtained with fluorescence measurements was slower for the liposomes, with decay times of 9.2 and 8.5 h for DPPG and POPG liposomes, respectively, than for the free drug with a decay time of 5.2 h. Ibuprofen could also be released from the LbL films made with DPPG and POPG liposomes, which is promising for further uses in patches.