2 resultados para Acapulco Trench, Pacific ocean

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of the CO(2)/carbonate system from the BIOSOPE cruise in the Eastern South Pacific Ocean, in an area not sampled previously. In particular, we present estimates of the anthropogenic carbon (C(ant)(TrOCA)) distribution in the upper 1000m of this region using the TrOCA method. The highest concentrations of C(ant)(TrOCA) found around 13 degrees S, 132 degrees W and 32 degrees S, 91 degrees W, are higher than 80 mu mol.kg(-)1 and 70 mu mol.kg(-1), respectively. The lowest concentrations are observed below 800m depth (<= 2 mu mol.kg(-1)) and within the Oxygen Minimum Zone (OMZ), mainly around 140 degrees W (< 11 mu mol.kg(-1)). As a result of the anthropogenic carbon penetration there has been decrease in pH by over 0.1 on an average in the upper 200 m. This work further improves our understanding on the penetration of anthropogenic carbon in the Eastern Pacific Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has investigated the impact of three different low-frequency sea surface temperature (SST) variability modes located in the Indian and the Pacific Oceans on the interannual variability of the South American Monsoon System (SAMS) using observed and numerical data. Rotated Empirical Orthogonal Function (REOF) analysis and numerical simulations with a General Circulation Model (GCM) were used. One of the three SST variability modes is located close to southeastern Africa. According to the composites, warmer waters over this region are associated with enhanced austral summer precipitation over the sub-tropics. The GCM is able to reproduce this anomalous precipitation pattern, simulating a wave train emanating from the Indian Ocean towards South America (SA). A second SST variability mode was located in the western Pacific Ocean. REOF analysis indicates that warmer waters are associated with drought conditions over the South Atlantic Convergence Zone (SACZ) and enhanced precipitation over the sub-tropics. The GCM indicates that the warmer waters over Indonesia generate drought conditions over tropical SA through a Pacific South America-like (PSA) wave pattern emanating from the western Pacific. Finally, the third SST variability mode is located over the southwestern South Pacific. The composites indicate that warmer waters are associated with enhanced precipitation over the SACZ and drought conditions over the sub-tropics. There is a PSA-like wave train emanating from Indonesia towards SA, and another crossing the Southern Hemisphere in the extra-tropics, probably associated with transient activity. The GCM is able to reproduce the anomalous precipitation pattern, although it is weaker than observed. The PSA-like pattern is simulated, but the model fails in reproducing the extra-tropical wave activity.