11 resultados para ATMOSPHERIC CHEMISTRY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Structural, vibrational, and energetic properties of new molecular species, HSI and HIS are investigated for the first time using a state-of-the-art theoretical approach. These molecules can be easily differentiated by their geometric parameters and vibrational spectra. HSI is much more stable, and a direct unimolecular isomerization is very unlikely. Kinetics estimates predict that only at low temperatures there is a possibility of isolating HIS. For HS-I, we estimate a bond dissociation energy of 46.25 kcal/mol, and a heat of formation at 298.15 K of 12.84 kcal/mol. For the H(2)S + I(2) -> HSI + HI reaction enthalpy, we found 8.40 kcal/ mol. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work reports a state-of-the-art theoretical characterization of four new sulfur-bromine species and five transition states on the [H, S(2), Br] potential energy surface. Our highest level theoretical approach employed the method coupled cluster singles and doubles with perturbative contributions of connected triples, CCSD(T), along with the series of correlation-consistent basis sets and with extrapolation to the complete basis set (CBS) limit in the optimization of the geometrical parameters and to quantify the energetic quantities. The structural and vibrational frequencies here reported are unique and represent the most accurate investigation to date of these species. The global minimum corresponds to a skewed structure HSSBr with a disulfide bond; this is followed by a pyramidal-like structure, SSHBr, 18.85 kcal/mol above the minimum. Much higher in energy, we found another skewed structure, HSBrS (50.29 kcal/mol), with one S-Br dative-type bond, and another pyramidal-like one, HBrSS (109.80 kcal/mol), with two S-Br dative-type bonds. The interconversion of HSSBr into SSHBr can occur via a transfer of either the hydrogen or the bromine atom but involves a very high barrier of about 43 kcal/mol. These molecules are potentially a new route of coupling the sulfur and bromine chemistry in the atmosphere, and conditions of high concentration of H(2)S like in volcanic eruptions might contribute to their formation. We note that HSSBr can act as a reservoir molecule for the reaction between the radicals HSS and Br. Also, an assessment of the methods DFT/B3LYP/CBS and MP2/CBS relative to CCSD(T)/CBS provides insights on the expected performance of these methods on the characterization of polysulfides and also of more complex systems containing disulfide bridges.
Resumo:
Asymmetric emission profiles of the stereoisomers of plant-derived volatile organic compounds vary with season, geography, plant type, and stress factors. After oxidation of these compounds in the atmosphere, the low-vapor pressure products ultimately contribute strongly to the particle-phase material of the atmosphere. In order to explore the possibility of stereochemical transfer to atmospheric aerosol particles during the oxidation of biogenic volatile organic compounds, second-order coherent vibrational spectra were recorded of the particle-phase organic material produced by the oxidation of different stereoisomeric mixes of alpha-pinene. The spectra show that the stereochemical configurations are not scrambled but instead are transferred from the gas-phase molecular precursors to the particle-phase molecules. The spectra also show that oligomers formed in the particle phase have a handed superstructure that depends strongly and nonlinearly on the initial stereochemical composition of the precursors. Because the stereochemical mix of the precursors for a material can influence the physical and chemical properties of that material, our findings suggest that chirality is also important for such properties of plant-derived aerosol particles. Citation: Ebben, C. J., S. R. Zorn, S.-B. Lee, P. Artaxo, S. T. Martin, and F. M. Geiger (2011), Stereochemical transfer to atmospheric aerosol particles accompanying the oxidation of biogenic volatile organic compounds, Geophys. Res. Lett., 38, L16807, doi: 10.1029/2011GL048599.
Resumo:
The seasonal evolution of daily and hourly values of global and diffuse solar radiation at the surface are compared for the cities of Sao Paulo and Botucatu, both located in Southeast Brazil and representative of urban and rural areas, respectively. The comparisons are based on measurements of global and diffuse solar irradiance carried out at the surface during a six year simultaneous period in these two cities. Despite the similar latitude and altitude, the seasonal evolution of daily values indicate that Sao Paulo receives, during clear sky days, 7.8% less global irradiance in August and 5.1% less in June than Botucatu. On the other hand, Sao Paulo receives, during clear sky days, 3.6% more diffuse irradiance in August and 15.6% more in June than Botucatu. The seasonal variation of the diurnal cycle confirms these differences and indicates that they are more pronounced during the afternoon. The regional differences are related to the distance from the Atlantic Ocean, systematic penetration of the sea breeze and daytime evolution of the particulate matter in Sao Paulo. An important mechanism controlling the spatial distribution of solar radiation, on a regional scale, is the sea breeze penetration in Sao Paulo, bringing moisture and maritime aerosol that in turn further increases the solar radiation scattering due to pollution and further reduces the intensity of the direct component of solar radiation at the surface. Surprisingly, under clear sky conditions the atmospheric attenuation of solar radiation in Botucatu during winter - the biomass burning period due to the sugar cane harvest - is equivalent to that at Sao Paulo City, indicating that the contamination during sugar cane harvest in Southeast Brazil has a large impact in the solar radiation field at the surface.
Resumo:
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved
Resumo:
There has been increasing interest in the gas-phase reactivity of alkyl nitrates because of their well-known applications as explosives and because of then role in atmospheric and in marine processes This manuscript describes an experimental study by FT-ICR techniques of the gas-phase reactions of OH(-) and F(-) with methyl and ethyl Innate For methyl nitrate, the main reaction channel is found to be an elimination process promoted by abstraction of an a proton from the methyl group. Nucleophilic displacement of nitrate anion through an S(N)2 process at the carbon center Is also found to he an important reaction channel with methyl nitrate In ethyl nitrate, Ruination of NO(3)(-) is greatly enhanced and this is attributed to the ease of an E2-type elimination process promoted by proton abstraction at the beta position of the ethyl group. Theoretical calculations at the MP2/6-311+G(3df,2p)//MP2/6-31+G(d) level of theory ale consistent with the relative importance of the reaction channels and suggest that these reactions proceed through a double well potential The calculations also predict that nucleophilic attack by OH(-) at the nitrogen center (Sn2@N) is energetically the rueful ad pathway but experiments with (18)OH(-) showed no evidence for this channel. Single-point calculations reveal a strong preference for approach to the emboli center and may explain the lack of reactivity at the nitrogen center. Calculations were also carried out or NH(2)(-) and SH(-) to establish the reactivity pattern to provide a better understanding of environmentally relevant nitrate esters.
Resumo:
New molecular species HSeCl, HClSe, and SeCl were investigated at a high level of theory, CCSD(T), with a series of correlation consistent basis sets with extrapolation to the CBS limit. Account has been taken for valence-only and core-valence correlation effects, and of anharmonic effects on the vibrational frequencies. HSeCl is 43.25 kcal mol (1) more stable than HClSe. A barrier (Delta G(#)) of 47.20 kcal mol (1) separates these species. Internuclear distances are generally overestimated by 0.008 angstrom in the valence-only correlation calculations. Inclusion of anharmonicity leads to much improved vibrational frequencies. For SeCl, we estimate Delta H(f) (0 K) = 23.96 and Delta H(f) (298.15 K) = 24.64 kcal mol (1); for HSeCl, we had 4.20 and 4.97 kcal mol (1), respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Structural, energetic, and vibrational properties of new molecular species, HSeF and HFSe, the associated transition state, and dissociation fragments are investigated using a state-of-the-art theoretical approach, CCSD(T)/CBS. HSeF is a normal covalently bonded molecule 38.98 kcal mol (1) more stable than the complex HF-Se, which shows an unusual structure with a central fluorine atom and a bond angle of 101.8 degrees.A barrier (Delta G(#)) of 49.01 kcal mol (1) separates the two species. Vibrational frequencies are also quite distinct. Heats of formation are evaluated for the diatomic fragments and HSeF. Final Delta(f)H values depend on the experimental accuracy of those of Se(g) and H(2)Se. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study reports a systematic state-of-the-art characterization of new sulfur-chlorine species on the [H, S(2), Cl] potential energy surface. Coupled cluster theory singles and doubles with perturbative contributions of connected triples, using the series of correlation consistent basis sets with extrapolations to the complete basis set limit (CBS), were employed to quantify the energetic quantities involved in the isomerization processes on this surface. The structures and vibrational frequencies are unique for some species and represent the most accurate investigation to date. These molecules are potentially a new route of coupling the sulfur and chlorine chemistries in the atmosphere, and conditions of high concentration of H(2)S (HS) like in volcanic eruptions might contribute to their formation. Also an assessment of the MP2/CBS approach relative to CCSD(T)/CBS provides insights on the expected performance of MP2/CBS on the characterization of polysulfides, and also of more complex systems containing disulfide bridges. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the polyoxides HOOH, HOOOH, HOOOOH, and HOOO employing the CCSD(T) methodology, and the correlation consistent basis sets. For all molecules, we have computed fundamental vibrational frequencies, structural parameters, rotational constants, and rotation-vibration corrections. For HOOOH, we have obtained a good agreement between our results and microwave and infrared spectra measurements, although for the symmetric OO stretch some important differences were found. Heats of formation were computed using atomization energies, and our recommendation is as follows: Delta H degrees(f,298)(HOOOH) = -21.50 kcal/mol and Delta H degrees(f,298)(HOOOOH) = -10.61 kcal/mol. In the case of HOOO, to estimate the heat of formation, we have constructed three isodesmic reactions to cancel high order correlation effects. The results obtained confirmed that the latter effects are very important for HOOO. The new Delta H degrees(f,298)(HOOO) obtained is 5.5 kcal/mol. We have also calculated the zero-point energies of DO and DOOO to correct the experimental lower limit determined for the Delta H degrees(f,298)(HOOO). The Delta(Delta ZPE) decreases the binding energy of HOOO by 0.56 kcal/mol. Employing the latter value, the new experimental lower limit for Delta H degrees(f,298)(HOOO) is 3.07 kcal/mol, just 2.4 kcal/mol lower than our determination. We expect that the fundamental vibrational frequencies and rotational constants determined for HOOOOH and DOOOOD contribute to its identification in the gas phase. The vibrational spectrum of HOOOOH shows some overlapping with that of HOOOH thus indicating that one may encounter some difficulties in its characterization. We discuss the consequences of the thermochemical properties determined in this work, and suggest that the amount of HOOO present in the atmosphere is smaller than that proposed recently in this journal (J. Phys. Chem A 2007, 111, 4727).
Resumo:
Oxidation of cholesterol (Ch) by a variety of reactive oxygen species gives rise mainly to hydroperoxides and aldehydes. Despite the growing interest in Ch-oxidized products, the detection and characterization of these products is still a matter of concern. In this work, the main Ch-oxidized products, namely, 3 beta-hydroxycholest-5-ene-7 alpha-hydroperoxide (7 alpha-OOH), 3 beta-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH), and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld), were detected in the same analysis using high-performance liquid chromatography (HPLC) coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry. The use of selected reaction monitoring mode (SRM) allowed a sensitive detection of each oxidized product, while the enhanced product ion mode (EPI) helped to improve the confidence of the analyses. Isotopic labeling experiments enabled one to elucidate mechanistic features during fragmentation processes. The characteristic fragmentation pattern of Ch-oxidized products is the consecutive loss of 1120 molecules, yielding cationic fragments at m/z 401, 383, and 365. Homolytic scissions of the peroxide bond are also seen. With (18)O-labeling approach, it was possible to establish a fragmentation order for each isomer. The SRM transitions ratio along with EPI and (18)O-labeled experiments give detailed information about differences for water elimination, allowing a proper discrimination between the isomers:Phis is of special interest considering the emerging role of Ch-oxidized products in the development of diseases.