15 resultados para ASME

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On-line leak detection is a main concern for the safe operation of pipelines. Acoustic and mass balance are the most important and extensively applied technologies in field problems. The objective of this work is to compare these leak detection methods with respect to a given reference situation, i.e., the same pipeline and monitoring signals acquired at the inlet and outlet ends. Experimental tests were conducted in a 749 m long laboratory pipeline transporting water as the working fluid. The instrumentation included pressure transducers and electromagnetic flowmeters. Leaks were simulated by opening solenoid valves placed at known positions and previously calibrated to produce known average leak flow rates. Results have clearly shown the limitations and advantages of each method. It is also quite clear that acoustics and mass balance technologies are, in fact, complementary. In general, an acoustic leak detection system sends out an alarm more rapidly and locates the leak more precisely, provided that the rupture of the pipeline occurs abruptly enough. On the other hand, a mass balance leak detection method is capable of quantifying the leak flow rate very accurately and of detecting progressive leaks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper develops a Markovian jump model to describe the fault occurrence in a manipulator robot of three joints. This model includes the changes of operation points and the probability that a fault occurs in an actuator. After a fault, the robot works as a manipulator with free joints. Based on the developed model, a comparative study among three Markovian controllers, H(2), H(infinity), and mixed H(2)/H(infinity) is presented, applied in an actual manipulator robot subject to one and two consecutive faults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embedded sensitivity analysis has proven to be a useful tool in finding optimum positions of structure reinforcements. However, it was not clear how sensitivities obtained from the embedded sensitivity method were related to the normal mode, or operational mode, associated to the frequency of interest. In this work, this relationship is studied based on a finite element of a slender sheet metal piece, with preponderant bending modes. It is shown that higher sensitivities always occur at nodes or antinodes of the vibrating system. [DOI: 10.1115/1.4002127]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow in the automotive catalytic converter is, in general, not uniform. This significantly affects cost, service life, and performance, in particular, during cold startup. The current paper reports on a device that provided a large improvement in flow uniformity. The device is to be placed in the converter inlet diffuser and is constructed out of ordinary screens. It is cheap and easy to install. Moreover, the device does not present most of the undesired effects, such as increase in pressure drop and time to light off, often observed in other devices developed for the same purpose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the use of optimization techniques in the design of a steel riser. Two methods are used: the genetic algorithm, which imitates the process of natural selection, and the simulated annealing, which is based on the process of annealing of a metal. Both of them are capable of searching a given solution space for the best feasible riser configuration according to predefined criteria. Optimization issues are discussed, such as problem codification, parameter selection, definition of objective function, and restrictions. A comparison between the results obtained for economic and structural objective functions is made for a case study. Optimization method parallelization is also addressed. [DOI: 10.1115/1.4001955]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cost of a new ship design heavily depends on the principal dimensions of the ship; however, dimensions minimization often conflicts with the minimum oil outflow (in the event of an accidental spill). This study demonstrates one rational methodology for selecting the optimal dimensions and coefficients of form of tankers via the use of a genetic algorithm. Therein, a multi-objective optimization problem was formulated by using two objective attributes in the evaluation of each design, specifically, total cost and mean oil outflow. In addition, a procedure that can be used to balance the designs in terms of weight and useful space is proposed. A genetic algorithm was implemented to search for optimal design parameters and to identify the nondominated Pareto frontier. At the end of this study, three real ships are used as case studies. [DOI:10.1115/1.4002740]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A great deal of works has been developed on the spar vortex-induced motion (VIM) issue. There are, however, very few published works concerning VIM of monocolumn platforms, partly due to the fact that the concept is fairly recent and the first unit was only installed last year. In this context, a meticulous study on VIM for this type of platform concept is presented here. Model test experiments were performed to check the influence of many factors on VIM, such as different headings, wave/current coexistence, different drafts, suppression elements, and the presence of risers. The results of the experiments presented here are motion amplitudes in both in-line and transverse directions, forces and added-mass coefficients, ratios of actual oscillation and natural periods, and motions in the XY plane. This is, therefore, a very extensive and important data set for comparisons and validations of theoretical and numerical models for VIM prediction. [DOI: 10.1115/1.4001440]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new concept and a preliminary study for a monocolumn floating unit are introduced, aimed at exploring and producing oil in ultradeep waters. This platform, which combines two relevant features-great oil storage capacity and dry tree production capability-comprises two bodies with relatively independent heave motions between them. A parametric model is used to define the main design characteristics of the floating units. A set of design alternatives is generated using this procedure. These solutions are evaluated in terms of stability requirements and dynamic response. A mathematical model is developed to estimate the first order heave and pitch motions of the platform. Experimental tests are carried out in order to calibrate this model. The response of each body alone is estimated numerically using the WAMIT (R) code. This paper also includes a preliminary study on the platform mooring system and appendages. The study of the heave plates presents the gain, in terms of decreasing the motions, achieved by the introduction of the appropriate appendages to the platform. [DOI: 10.1115/1.4001429]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle-image velocimetry (PIV) was used to visualize the flow within an optically transparent pediatric ventricular assist device (PVAD) under development in our laboratory The device studied is a diaphragm type pulsatile pump with an ejection volume of 30 ml per beating cycle intended for temporary cardiac assistance as a bridge to transplantation or recovery in children. Of particular interest was the identification of flow patterns, including regions of stagnation and/or strong turbulence that often promote thrombus formation and hemolysis, which can degrade the usefulness of such devices. For this purpose, phase-locked PIV measurements were performed in planes parallel to the diaphram that drives the flow in the device. The test fluid was seeded with 10 Am polystyrene spheres, and the motion of these particles was used to determine the instantaneous flow velocity distribution in the illumination plane. These measurements revealed that flow velocities up to 1.0 m/s can occur within the PVAD. Phase-averaged velocity fields revealed the fixed vortices that drive the bulk flow within the device, though significant cycle-to-cycle variability was also quite apparent in the instantaneous velocity distributions, most notably during the filling phase. This cycle-to-cycle variability can generate strong turbulence that may contribute to greater hemolysis. Stagnation regions have also been observed between the input and output branches of the prototype, which can increase the likelihood of thrombus formation. [DOI: 10.1115/1.4001252]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between the oscillations of piezoceramic transducer and the mechanism of as excitation-the generator of the electric current of limited power-supply-are analyzed in this paper In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power as that provided by a dc motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a nonideal problem. In this work, we present certain phenomena as Sommerfeld effect, jump, saturation, and stability, through the influences of the parameters of the governing equations motion. [DOI: 10.1115/1.3007909]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a number of numerical simulations of the transverse vibrations of two (or one) imbalanced rotors forced by an electric motor with limited power supply, during the passage through of the two resonance zones (increasing and decreasing input voltages). The predominant presence of the Sommerfeld effect. when the rotational velocity of the motor is captured, in the second resonance frequency is demonstrated. We have shown that the hysteretic jump phenomenon exists in a rotor system with two (or one) disks, and with this, we have shown that a torque is influenced by the dynamical behavior of die rotor [DOI: 10.1115/1.3007979]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions, it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in nondimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples. [DOI: 10.1115/1.4003542]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical algorithm for fully dynamical lubrication problems based on the Elrod-Adams formulation of the Reynolds equation with mass-conserving boundary conditions is described. A simple but effective relaxation scheme is used to update the solution maintaining the complementarity conditions on the variables that represent the pressure and fluid fraction. The equations of motion are discretized in time using Newmark`s scheme, and the dynamical variables are updated within the same relaxation process just mentioned. The good behavior of the proposed algorithm is illustrated in two examples: an oscillatory squeeze flow (for which the exact solution is available) and a dynamically loaded journal bearing. This article is accompanied by the ready-to-compile source code with the implementation of the proposed algorithm. [DOI: 10.1115/1.3142903]