292 resultados para ARACHIDONIC-ACID RELEASE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PGE(2), an arachidonic acid metabolite produced by various type of cells regulates a broad range of physiological activities in the endocrine, cardiovascular, gastrointestinal, and immune systems, and is involved in maintaining the local homeostasis. In the immune system, PGE(2) is mainly produced by APCs and it can suppress the Th1-mediated immune responses. The aim of this study was to develop PGE(2)-loaded biodegradable MS that prolong and sustain the in vivo release of this mediator. An o/w emulsion solvent extraction-evaporation method was chosen to prepare the MS. We determined their diameters, evaluated the in vitro release of PGE(2), using enzyme immunoassay and MS uptake by peritoneal macrophages. To assess the preservation of biological activities of this mediator, we determined the effect of PGE(2) released from MS on LPS-induced TNF-alpha release by murine peritoneal macrophages. We also analyzed the effect of encapsulated PGE(2) on inflammatory mediators release from HUVECs. Finally, we studied the effect of PGE(2) released from biodegradable MS in sepsis animal model. The use of this formulation can provide an alternative strategy for treating infections, by modulating or inhibiting inflammatory responses, especially when they constitute an exacerbated profile. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of the present study was to determine the effects of trans-10, cis-12 conjugated linoleic acid (CLA) in adipose tissue explant cultures of growing pigs on the following responses: lipogenesis (measured as rate of C-14-labeled glucose incorporation over a subsequent 2-h incubation in the presence or absence of insulin), lipolysis (release of non-esterified fatty acid over a 2-h incubation in the presence or absence of isoproterenol), activities of lipogenic enzymes, and mRNA abundance of fatty acid synthase (FAS). Adipose tissue explants from nine growing pigs (78 +/- 3 kg) were cultured in 199 medium with insulin, dexamethasone and antibiotics for 4, 12, 24, and 48 h. The treatments were 1) control: 100 mu M polyvinyl alcohol (PVA); 2) pGH: 100 ng/mL porcine growth hormone (pGH) plus 100 mu M PVA; 3) CLA200: 200 mu M trans-10, cis-12 CLA; 4) CLA50: 50 mu M trans-10, cis-12 CLA, and 5) LA: 200 mu M linoleic acid. Fatty acids were added along with PVA (2: 1), respectively, for 24 h. Explants were collected after each culture period and assayed for lipogenesis. Transcripts of FAS mRNA were quantified by real-time RT-PCR after 24 and 48 h. Lipolysis and activities of FAS, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and NADP-malate dehydrogenase were determined after 48 h. As expected, glucose incorporation was decreased (P < 0.05) in response to pGH treatment (positive control). LA had no effect on any parameter evaluated. Treatment with trans-10, cis-12 CLA decreased FAS activity (P < 0.05), but NADPH-generating enzymes were unaffected by treatments. Consistent with reduction in FAS activity, both lipid synthesis and FAS mRNA abundance were reduced with chronic CLA treatment, pGH increased baseline and stimulated lipolysis (P < 0.05) after 48 h of culture, while CLA treatment had no effect on non-esterified fatty acid release. Results of this study showed that trans-10, cis-12 CLA alters lipogenesis but has no effect on lipolysis in cultures of pig adipose tissue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, the production of prostaglandin E(2) (PGE(2)) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A(2) (PLA(2)), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA(2)s (cytosolic PLA(2) and Ca(2+)-independent PLA(2)) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE(2) levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE(2) production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF(3)), an intracellular PLA(2) inhibitor, but not bromoenol lactone (BEL), an iPLA(2) inhibitor, suppressed the MT-III-induced AA and PGE(2) release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE(2). COX-2 isoform is preeminent over COX-1 for production of PGE(2) stimulated by MT-III. PGE(2) and AA release by MT-III probably is related to cPLA(2) activation. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of myotoxin III (MT-III), a phospholipase A(2) (sPLA(2)) from Bothrops asper snake venom, and crotoxin B (CB), a neurotoxic and myotoxic sPLA2 from the venom of Crotalus durissus terrificus, on cyclooxygenases (COXs) expression and biosynthesis of prostaglandins (PGs) were evaluated, together with the mechanisms involved in these effects. Upon intraperitoneal injection in mice, both sPLA(2)s promoted the synthesis of PGD(2) and PGE(2), with a different time-course. MT-III, but not CB, induced COX-2 expression by peritoneal leukocytes without modification on COX-1 constitutive expression, whereas CB increased the constitutive activity of COX-1. MT-III increased the enzymatic activity of COX-1 and COX-2. Similar effects were observed when these sPLA(2)s were incubated with isolated macrophages, evidencing a direct effect on these inflammatory cells. Moreover, both toxins elicited the release of arachidonic acid from macrophages in vitro. inhibition of cPLA(2) by AACOCF(3), but not of iPLA(2) by PACOCF(3) or BEL, significantly reduced PGD2, PGE2 and arachidonic acid (AA) release promoted by MT-III. These inhibitors did not affect MT-III-induced COX-2 expression. In contrast, cPLA2 inhibition did not modify the effects of CB, whereas iPLA2 inhibition reduced PGD2 and AA production induced by CB. These findings imply that distinct regulatory mechanisms leading to PGs` synthesis are triggered by these snake venom sPLA(2)s. Such differences are likely to explain the dissimilar patterns of inflammatory reaction elicited by these sPLA(2)s in vivo. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyunsaturated fatty acids (PUFAs) are known to inhibit cell proliferation of many tumour types both in vitro and in vivo. Their capacity to interfere with cell proliferation has been linked to their induction of reactive oxygen species (ROS) production in tumour tissues leading to cell death through apoptosis. However, the exact mechanisms of action of PUFAs are far from clear, particularly in brain tumours. The loss of bound hexokinase from the mitochondrial voltage-dependent anion channel has been directly related to loss of protection from apoptosis, and PUFAs can induce this loss of bound hexokinase in tumour cells. Tumour cells overexpressing Akt activity, including gliomas, are sensitised to ROS damage by the Akt protein and may be good targets for chemotherapeutic agents, which produce ROS, such as PUFAs. Cardiolipin peroxidation may be an initial event in the release of cytochrome c from the mitochondria, and enriching cardiolipin with PUFA acyl chains may lead to increased peroxidation and therefore an increase in apoptosis. A better understanding of the metabolism of fatty acids and eicosanoids in primary brain tumours such as gliomas and their influence on energy balance will be fundamental to the possible targeting of mitochondria in tumour treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reported effects of different families of fatty acids (FA; SFA, MUFA, n-3 and n-6 PUFA) on human health and the importance of macrophage respiratory burst and cytokine release to immune defence led us to examine the influence of palmitic acid (PA), oleic acid (OA), linoleic acid, arachidonic acid, EPA and DHA on macrophage function. We determined fungicidal activity, reactive oxygen species (ROS) and cytokine production after the treatment of J774 cells with non-toxic concentrations of the FA. PA had a late and discrete stimulating effect on ROS production, which may be associated with the reduced fungicidal activity of the cells after treatment with this FA. OA presented a sustained stimulatory effect on ROS production and increased fungicidal activity of the cells, suggesting that enrichment of diets with OA may be beneficial for pathogen elimination. The effects of PUFA on ROS production were time-and dose-dependently regulated, with no evident differences between n-3 and n-6 PUFA. It was worth noting that most changes induced after stimulation of the cells with lipopolysaccharide were suppressed by the FA. The present results suggest that supplementation of the diet with specific FA, not classes of FA, might enable an improvement in host defence mechanisms or a reduction in adverse immunological reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diet and plasma lipid patterns associated with lipid oxidation susceptibility in rats fed different doses of polyunsaturated fatty acids (n-3 PUFA) from fish oil were evaluated. Wistar rats were assigned into three groups and received diets containing 8% soybean oil (SOY), 4% soybean oil + 4% fish oil (SOY-FISH) and 8% fish oil (FISH) for 21 days. Linoleic, oleic and ?-linolenic acids in SOY diets were substituted by myristic, palmitic, palmitoleic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in SOY-FISH and FISH diets reducing the n-6/n-3 ratio and increasing the peroxidability index (PI). Increased dietary EPA and DHA were observed in SOY-FISH and FISH plasma at the expense of linoleic and arachidonic acid levels. Saturated fatty acids, which were significantly different between the three diets (P < 0.01), were found at the same concentration in the plasma (P = 0.23). No changes were observed in oxidative stress as measured by the concentration of thiobarbituric acid reactive substances (TBARS) expressed in brain homogenates. However, TBARS concentration in the plasma of the SOY-FISH group was higher than the other two groups (P = 0.02). The major differences between these three groups were the n-3 PUFA content (0.4, 1.8 and 3.2 g/100 g diet) and the saturates/polyunsaturates ratio (0.3, 0.5 and 0.8) for SOY, SOY-FISH, and FISH groups, respectively. Thus, n-3 PUFA intake from fish oil only when followed by a decrease in saturated/polyunsaturated fatty acids ratio increased oxidative susceptibility in rats measured by plasma TBARS concentration

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of slow release fertilizer has become a new trend to save fertilizer consumption and to minimize environmental pollution. Due to its polymeric cationic, biodegradable, bioabsorbable, and bactericidal characteristics, chitosan (CS) nanoparticle is an interesting material for use in controlled release systems. However, there are no attempts to explore the potential of chitosan nanoparticles as controlled release for NPK fertilizers. In this work chitosan nanoparticles were obtained by polymerizing methacrylic acid for the incorporation of NPK fertilizers. The interaction and stability of chitosan nanoparticle suspensions containing nitrogen (N), phosphorus (P) and potassium (K) were evaluated by FTIR spectroscopy, particle size analysis and zeta-potential. The FTIR results indicated the existence of electrostatic interactions between chitosan nanoparticles and the elements N, P and K. The stability of the CS-PMAA colloidal suspension was higher with the addition of nitrogen and potassium than with the addition of phosphorus, due to the higher anion charge from the calcium phosphate than the anion charges from the potassium chloride and urea. The mean diameter increase of the CS-PMAA nanoparticles in suspension with the addition of different compounds indicated that the elements are being aggregated on the surface of the chitosan nanoparticles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatty acid (FA) may disturb the redox state of the cells not only by an increase in reactive oxygen species (ROS) generation but also due to a reduction in antioxidant enzyme activities. The effect of various FAs (palmitic, stearic, oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (EPAs)) on Jurkat and Raji cells, (human T and B leukaemic cell lines was investigated). The following measurements were carried out: FA composition of the cells, cell proliferation and activities of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). The protective effect of alpha-tocopherol on cell death was also investigated. Each cell line presented a specific FA composition. All the tested ENS reduced catalase activity. The toxic effect of FA was abolished by the pre-incubation with physiological concentrations of alpha-tocopherol. The findings support the proposition that the increase in oxidative stress induced by FA partially occurs due to a reduction in catalase activity. In spite of the decrease in the enzyme activity, catalase protein and mRNA levels were not changed, suggesting a post-translational regulation. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid-liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the alpha polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal beta and beta` solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, gamma-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. gamma-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diet and plasma lipid patterns associated with lipid oxidation susceptibility in rats fed different doses of polyunsaturated fatty acids (n-3 PUFA) from fish oil were evaluated. Wistar rats were assigned into three groups and received diets containing 8% soybean oil (SOY), 4% soybean oil + 4% fish oil (SOY-FISH) and 8% fish oil (FISH) for 21 days. Linoleic, oleic and alpha-linolenic acids in SOY diets were substituted by myristic, palmitic, palmitoleic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in SOY-FISH and FISH diets reducing the n-6/n-3 ratio and increasing the peroxidability index (PI). Increased dietary EPA and DHA were observed in SOY-FISH and FISH plasma at the expense of linoleic and arachidonic acid levels. Saturated fatty acids, which were significantly different between the three diets (P < 0.01), were found at the same concentration in the plasma (P = 0.23). No changes were observed in oxidative stress as measured by the concentration of thiobarbituric acid reactive substances (TBARS) expressed in brain homogenates. However, TBARS concentration in the plasma of the SOY-FISH group was higher than the other two groups (P = 0.02). The major differences between these three groups were the n-3 PUFA content (0.4, 1.8 and 3.2 g/100 g diet) and the saturates/polyunsaturates ratio (0.3, 0.5 and 0.8) for SOY, SOY-FISH, and FISH groups, respectively. Thus, n-3 PUFA intake from fish oil only when followed by a decrease in saturated/polyunsaturated fatty acids ratio increased oxidative susceptibility in rats measured by plasma TBARS concentration. PRACTICAL APPLICATIONS Because fish oil intake is associated with risk reduction for cardiovascular disease, individuals are taking supplements containing a high dose of fish oil. However, there is no scientific consensus if the intake of a high dose of fish oil could increase the oxidative stress. Thus, more studies are necessary to assure the safety of this kind of supplementation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The perivascular nerve network expresses a Ca(2+) receptor that is activated by high extracellular Ca(2+) concentrations and causes vasorelaxation in resistance arteries. We have verified the influence of perivascular nerve fibers on the Ca(2+)-induced relaxation in aortic rings. To test our hypothesis, either pre-contracted aortas isolated from rats after sensory denervation with capsaicin or aortic rings acutely denervated with phenol were stimulated to relax with increasing extracellular Ca(2+) concentration. We also studied the role of the endothelium on the Ca(2+)-induced relaxation, and we verified the participation of endothelial/nonendothelial nitric oxide and cyclooxygenise-arachidonic acid metabolites. Additionally, the role of the sarcoplasmic reticulum, K(+) channels and L-type Ca(2+) channels on the Ca(2+)-induced relaxation were evaluated. We have observed that the Ca(2+)-induced relaxation is completely nerve independent, and it is potentiated by endothelial nitric oxide (NO). In endothelium-denuded aortic rings, indomethacin and AH6809 (PGF(2 alpha) receptor antagonist) enhance the relaxing response to Ca(2+). This relaxation is inhibited by thapsigargin and verapamil, while was not altered by tetraethylammonium. In conclusion, we have shown that perivascular nervous fibers do not participate in the Ca(2+)-induced relaxation, which is potentiated by endothelial NO. In endothelium-denuded preparations, indomethacin and AH6809 enhance the relaxation induced by Ca(2+). The relaxing response to Call was impaired by verapamil and thapsigargin, revealing the importance of L-type Ca(2+) channels and sarcoplasmic reticulum in this response. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Arachidonic acid is released from cellular membranes by the action of phospholipase A(2) (PLA(2)) and is implicated in microtubule-associated protein Tau phosphorylation. Tau hyperphosphorylation affects its ability to stabilize microtubules. Objective: To determine the effect of PLA(2) inhibition on the phosphorylation state of Tau phosphoepitopes in primary cultures of hippocampal neurons. Methods: 4 DIC neurons were incubated at different concentrations of methyl-arachidonylfluorophosphonate (MAFP), an irreversible inhibitor of cPLA(2) and iPLA(2). Changes on Tau phosphorylation were determined by Western blotting with a panel of anti-Tau antibodies (C-terminal, Ser199/202, Ser202/205, Ser396 and Ser214). Results: The Ser214 site was hyperphosphorylated upon MAFP treatment. Significant differences were observed with 10 mu M (p = 0.01), 50 mu M (p = 0.01) and 100 mu M (p = 0.05) of MAFP. Less-intense changes were found in other phosphoepitopes. Conclusion: The present findings indicate that the phosphorylation of Ser214 is regulated by c- and/or iPLA(2), whereas other phosphoepitopes primarily regulated by GKS3b were not affected. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In rats, phospholipase A(2) (PLA(2)) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA(2) is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA(2) in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA(2) activity was increased just in the parietal cortex. These findings suggest that PLA(2) activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA(2) activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA(2) activity may offer new treatment strategies for this disease.