3 resultados para ANTIBODY RECOGNITION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Duffy binding protein (DBP), a leading malaria vaccine candidate, plays a critical role ill Plasmodium vivax erythrocyte invasion. Sixty-eight of 366 (18.6%) subjects had IgG anti-DBP antibodies by enzyme-linked immunosorbent assay (ELISA) in a community-based cross-sectional survey ill the Brazilian Amazon Basin. Despite Continuous exposure to low-level malaria transmission, the overall seroprevalence decreased to 9.0% when the Population was reexamined 12 months later. Antibodies from 16 of 50 (360%) Subjects who were ELISA-positive at the baseline were able to inhibit erythrocyte binding to at least one of two DBP variants tested. Most (13 of 16) of these subjects still had inhibitory antibodies when reevaluated 12 months later. Cumulative exposure to malaria was the strongest predictor of DBP seropositivity identified by Multiple logistic regression models in this population. The poor antibody recognition of DBP elicited by natural exposure to P. vivax in Amazonian populations represents a challenge to be addressed by vaccine development strategies.
Resumo:
Temporal changes in the prevalence of antigenic variants in Plasmodium falciparum populations have been interpreted as evidence of immune-mediated frequency-dependent selection, but evolutively neutral processes may generate similar patterns of serotype replacement. Over 4 years, we investigated the population dynamics of P. falciparum polymorphisms the community level by using 11 putatively neutral microsatellite markers. Plasmodium falciparum Populations were less diverse than sympatric P. vivax isolates, with less multiple-clone infections, lower number of alleles per locus and lower Virtual heterozygosity, but both species showed significant multilocus linkage disequilibrium. Evolutively neutral P. falciparum polymorphisms showed a high turnover rate, with few lineages persisting for several months in the population. Similar results had previously been obtained, in the same community, for sympatric P. vivax isolates. In contrast, the prevalence of the 2 dimorphic types of a major antigen, MSP-2, remained remarkably stable throughout the Study period. We Suggest that the relatively fast turnover of parasite lineages represents the typical population dynamics of neutral polymorphisms in small populations, with clear implications for the detection of frequency-dependent selection of polymorphisms.
Resumo:
Immune evasion by Plasmodium falciparum is favored by extensive allelic diversity of surface antigens. Some of them, most notably the vaccine-candidate merozoite surface protein (MSP)-1, exhibit a poorly understood pattern of allelic dimorphism, in which all observed alleles group into two highly diverged allelic families with few or no inter-family recombinants. Here we describe contrasting levels and patterns of sequence diversity in genes encoding three MSP-1-associated surface antigens of P. falciparum, ranging from an ancient allelic dimorphism in the Msp-6 gene to a near lack of allelic divergence in Msp-9 to a more classical multi-allele polymorphism in Msp-7 Other members of the Msp-7 gene family exhibit very little polymorphism in non-repetitive regions. A comparison of P. falciparum Msp-6 sequences to an orthologous sequence from P. reichenowi provided evidence for distinct evolutionary histories of the 5` and 3` segments of the dimorphic region in PfMsp-6, consistent with one dimorphic lineage having arisen from recombination between now-extinct ancestral alleles. In addition. we uncovered two surprising patterns of evolution in repetitive sequence. Firsts in Msp-6, large deletions are associated with (nearly) identical sequence motifs at their borders. Second, a comparison of PfMsp-9 with the P. reichenowi ortholog indicated retention of a significant inter-unit diversity within an 18-base pair repeat within the coding region of P. falciparum, but homogenization in P. reichenowi. (C) 2009 Elsevier B.V. All rights reserved.